cho hình chữ nhật ABCD có AB=12cm, BC=9cm.Gọi H là chân đường vuông góc kẻ từ A xuống BD.
a, chứng minh tam giác HAC đồng dạng với tam giác CDB
b, tính độ dài AH
c, gọi M,N,P lần lượt là trung điểm của BC,AH,DH.tứ giác BMPN là hình gì? vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
góc ABH=góc BDC
=>ΔAHB đồng dạng với ΔBCD
b: BD=căn 9^2+12^2=15cm
AH=9*12/15=108/15=7,2cm
c: Xét ΔHAD có HN/HA=HP/HD
nên NP//AD và NP=AD/2
=>NP//BC và NP=BC/2
=>NP//BM và NP=BM
=>BNPM là hình bình hành
Lời giải:
a) Xét tam giác $ADH$ và $BDA$ có:
$\widehat{AHD}=\widehat{BAD}=90^0$
$\widehat{D}$ chung
$\Rightarrow \triangle ADH\sim \triangle BDA$ (g.g)
$\Rightarrow \frac{AD}{BD}=\frac{DH}{DA}\Rightarrow DA^2=BD.DH$ (đpcm)
b) Xét tam giác $AHD$ và $ABC$ có:
$\widehat{AHD}=\widehat{ABC}=90^0$
$\widehat{ADH}=\widehat{ADB}=\widehat{ACB}$ (tính chất hcn)
$\Rightarrow \triangle AHD\sim \triangle ABC$ (g.g)
c)
Xét tam giác $MAD$ và $NAC$ có:
$\widehat{ADM}=\widehat{ADB}=\widehat{ACB}=\widehat{ACN}$
$\frac{AD}{AC}=\frac{HD}{BC}=\frac{HD:2}{BC:2}=\frac{MD}{NC}$ (do tam giác đồng dạng phần b)
$\Rightarrow \triangle MAD\sim \triangle NAC$ (c.g.c)
$\Rightarrow \widehat{MAD}=\widehat{NAC}$
d)
Tam giác đồng dạng phần b cho ta $\widehat{DAH}=\widehat{CAB}$
Tam giác đồng dạng phần c cho ta $\widehat{DAM}=\widehat{CAN}$
$\Rightarrow \widehat{DAH}-\widehat{DAM}=\widehat{CAB}-\widehat{CAN}$
hay $\widehat{MAH}=\widehat{NAB}$
$\Rightarrow \widehat{MAN}=\widehat{HAB}$
Xét tam giác $AHB$ và $AMN$ có:
$\widehat{HAB}=\widehat{MAN}$
$\frac{AM}{AN}=\frac{AD}{AC}=\frac{AD}{BD}=\frac{AH}{AB}$ (từ tam giác đồng dạng phần c và a)
$\Rightarrow \triangle AHB\sim \triangle AMN$ (c.g.c)
$\Rightarrow \widehat{AMN}=\widehat{AHB}=90^0$
a)
vì ABCD hình chữ nhật nên ta có AB//CD
=> góc ABH= góc BDC ( so le trong, AB//CD)
xét tam giác AHB,BCD có
góc A= góc C =90
góc ABH=BDC(cmt)
=> tam giác AHB đồng dạng với tam giác CDB (gg)
b)
vì ABCD hcn nên
AB=CD=12
BC=AD=9
AD Đlí pytado cho tam giác vuông CDB có
BD2=BC2+DC2
BD2=81+144
BD=15cm
theo câu a) ta có
AH/AB=BC/BD
=> AH= AB.BC chia BD
AH= 12.9 chia 15
AH= 7.2CM
C)
BD
a) Xét tam giác AHB và tam giác BCD ta có:
AHB = BCD (=90^0)
ABH = BDC (AB // CD và 2 góc slt)
=> Tam giác AHB đồng dạng với tam giác BCD (G-G)
b) Tam giác BCD vuonng tại C. Áp dụng Pitago ta tính được BD = 15cm
Tam giác AHB đồng dạng với tam giác BCD (G-G)
\(\Rightarrow\dfrac{AH}{BC}=\dfrac{AB}{BD}\Rightarrow\dfrac{AH}{9}=\dfrac{12}{15}\)
=> AH = 7,2 cm
c) Tam giác AHB vuông tại H. Áp dụng Pitago ta tính được HB = 9,6cm
\(S_{AHB}=\dfrac{1}{2}AH.HB=\dfrac{1}{2}.7,2.9,6=34,56\left(cm^2\right)\)
a) Xét ΔAHB vuông tại H và ΔDAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB∼ΔDAB(g-g)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)
Do đó: ΔAHB~ΔBCD
b: ta có: ΔABD vuông tại A
=>\(AB^2+AD^2=BD^2\)
=>\(BD^2=12^2+5^2=169\)
=>\(BD=\sqrt{169}=13\left(cm\right)\)
Xét ΔABD vuông tại A có AH là đường cao
nên \(AH\cdot BD=AB\cdot AD\)
=>\(AH\cdot13=12\cdot5=60\)
=>\(AH=\dfrac{60}{13}\left(cm\right)\)
c: Xét ΔBCD có CE là phân giác
nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(1)
Xét ΔHAB vuông tại H và ΔADB vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHAB~ΔADB
=>\(\dfrac{HA}{AD}=\dfrac{HB}{AB}\)
=>\(\dfrac{HA}{HB}=\dfrac{AD}{AB}=\dfrac{BC}{CD}\left(2\right)\)
Từ (1),(2) suy ra \(\dfrac{EB}{ED}=\dfrac{HA}{HB}\)
=>\(EB\cdot HB=HA\cdot ED\)