tìm x
a, 2√x+2= √x3−8
b,(√x-2 )( 5- √x ) = 4- x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x = -1. b) x = 4 hoặc x = 5.
c) x = ± 2 . d) x = 1 hoặc x = 2.
a) (2x - 5)2 - (5 + 2x) = 0
<=> 4x2 - 22x + 20 = 0
\(\Leftrightarrow\left(2x-\dfrac{11}{2}\right)^2=\dfrac{41}{4}\)
\(\Leftrightarrow x=\dfrac{\pm\sqrt{41}+11}{4}\)
b) \(27x^3-54x^2+36x=0\)
\(\Leftrightarrow x\left(3x^2-6x+4\right)=0\)
\(\Leftrightarrow x=0\) (Vì \(3x^2-6x+4=3\left(x-1\right)^2+1>0\forall x\))
c) x3 + 8 - (x + 2).(x - 4) = 0
\(\Leftrightarrow\left(x+2\right).\left(x^2-2x+4\right)-\left(x+2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+8\right)=0\)
\(\Leftrightarrow x=-2\) (Vì \(x^2-3x+8=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}>0\))
d) \(x^6-1=0\)
\(\Leftrightarrow\left(x^2\right)^3-1=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)
\(\Leftrightarrow x^2-1=0\) (Vì \(x^4+x^2+1>0\))
\(\Leftrightarrow x=\pm1\)
\(d,x^6-1=0\\ \Leftrightarrow\left(x^2\right)^3-1^3=0\\ \Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x^4+x^2+1=0\left(Vô.lí,vì:x^4\ge0;x^2\ge0,\forall x\in R\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ c,\left(x^3+8\right)-\left(x+2\right)\left(x-4\right)=0\\ \Leftrightarrow\left(x^3+8\right)-\left(x^2-2x-8\right)=0\\ \Leftrightarrow x^3-x^2+2x+16=0\\ \Leftrightarrow x^3+2x^2-3x^2-6x+8x+16=0\\ \Leftrightarrow x^2\left(x+2\right)-3x\left(x+2\right)+8\left(x+2\right)=0\\ \Leftrightarrow\left(x^2-3x+8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-3x+8=0\left(Vô.lí\right)\\x+2=0\end{matrix}\right.\Leftrightarrow x=-2\)
l) (x + 9) . (x2 – 25) = 0
<=> (x + 9) . (x – 5) . (x + 5) = 0
<=> \(\left[{}\begin{matrix}\text{x + 9 = 0}\\x-5=0\\x+5=0\end{matrix}\right.\left[{}\begin{matrix}x=-9\\x=5\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{-9,5,-5\right\}\)
e) |x - 4 |< 7
<=> \(\left[{}\begin{matrix}x-4=7\\x-4=-7\end{matrix}\right.< =>\left[{}\begin{matrix}x=11\\x=-3\end{matrix}\right.\)
Vậy S = \(\left\{11;-3\right\}\)
I,(x+9).(x^2-25)=0
tương đương:x+9=0
x^2-25=0
tương đương : x=-9
x=5
e,\(\left|x-4\right|\)=7
tương đương x-4=4
x-4=-4
tương đương :x=0
x=-8
a,=5/10+6/10
=11/10
b,=6/4+5/4
=11/4
c,=20/8-3/8
=17/8
d,x=1/7.3/4
x=3/28
e,x=1/8:3/2
x=1/8.2/3
x=1/12
a) \(\dfrac{5}{10}+\dfrac{3}{5}=\dfrac{5}{10}+\dfrac{6}{10}=\dfrac{11}{10}\)
b) \(\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{6}{4}+\dfrac{5}{4}=\dfrac{11}{4}\)
c) \(\dfrac{5}{2}-\dfrac{3}{8}=\dfrac{20}{8}-\dfrac{3}{8}=\dfrac{17}{8}\)
d) \(x:\dfrac{3}{4}=\dfrac{1}{7}\)
\(x=\dfrac{1}{7}\times\dfrac{3}{4}\)
\(x=\dfrac{3}{28}\)
e) \(X\times\dfrac{3}{2}=\dfrac{1}{8}\)
\(X=\dfrac{1}{8}:\dfrac{3}{2}\)
\(X=\dfrac{1}{8}\times\dfrac{2}{3}\)
\(X=\dfrac{1}{12}\)
<=> \(\frac{1.2.3....31}{4.6.8....64}=2^n\Rightarrow\frac{1.2.3....30.31}{2\left(2.3.4.5...31\right).32}=2^n\Leftrightarrow\frac{1}{2.32}=2^n\Leftrightarrow\frac{1}{2^6}=2^n\)
=> 2^6.2^n = 1
=> 2^ (n + 6 ) = 2^0
=> n+ 6 = 0
=> n = - 6
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}....\frac{31}{64}=\frac{1.2.3....31}{4.6.8....64}=\frac{1.2.3....31}{2.3.2.4....2.32}=\frac{1.2.3....31}{2^{30}.\left(3.4....32\right)}=\frac{2}{2^{30}.32}=\frac{1}{2^{34}}=2^{-34}=2^n=>n=-34\)
a, Không rõ đề bạn ơi ;-;
b, ĐKXĐ : \(x\ge0\)
Ta có : \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=4-x=\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)=\left(\sqrt{x}-2\right)\left(2+\sqrt{x}\right)\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-5-\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\sqrt{x}-2=0\)
\(\Leftrightarrow x=4\) ( TM )
Vậy ...
`b)(sqrtx-2)(5-sqrtx)=4-x`
`đk:0<=x`
`pt<=>(sqrtx-2)(sqrtx-5)=x-4`
`<=>x-7sqrtx+10=x-4`
`<=>7sqrtx=14`
`<=>sqrtx=2`
`<=>x=4(tmđk).`