Cho a,b là các số thực thỏa mãn điều kiện a^2+b^2=4+ab
Chứng minh 8/3<=a^2+b^2<=8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
Dấu BĐT bị ngược, sửa đề: \(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^4+2a^2b^2}\le\dfrac{1}{2}\).
Đặt \(b^2=x\left(x>0\right)\Rightarrow a+x=2ax\).
Khi đó ta cần chứng minh:
\(\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\le\dfrac{1}{2}\)
Áp dụng BĐT AM-GM:
\(\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\)
\(\le\dfrac{1}{2a^2x+2ax^2}+\dfrac{1}{2ax^2+2a^2x}\)
\(=\dfrac{2}{2ax\left(a+x\right)}\)
\(=\dfrac{1}{ax\left(a+x\right)}\)
\(=\dfrac{1}{2a^2x^2}\)
Ta thấy: \(a+x\ge2\sqrt{ax}\)
\(\Leftrightarrow2ax\ge2\sqrt{ax}\)
\(\Leftrightarrow ax-\sqrt{ax}\ge0\)
\(\Leftrightarrow\sqrt{ax}\left(\sqrt{ax}-1\right)\ge0\)
\(\Leftrightarrow\sqrt{ax}\ge1\)
\(\Rightarrow ax\ge1\)
Khi đó: \(\dfrac{1}{2a^2x^2}\le\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\le\dfrac{1}{2}\)
Hay \(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^4+2a^2b^2}\le\dfrac{1}{2}\).
Mình xài p,q,r nhé :))
Ta có:
\(a^3+b^3+c^3=p^3-3pq+3r=1-3q+3r\)
\(a^4+b^4+c^4=1-4q+2q^2+4r\)
Khi đó BĐT tương đương với:
\(\frac{1}{8}+2q^2+4r-4q+1\ge1-3q+3r\)
\(\Leftrightarrow2q^2-q+\frac{1}{8}+r\ge0\)
\(\Leftrightarrow2\left(q-\frac{1}{4}\right)+r\ge0\) ( đúng )
\(a^4+b^4+c^4+\frac{1}{8}\left(a+b+c\right)^4\ge\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)
Khúc đầu có gì đâu nhỉ: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=p^3-3\left[\left(a+b+c\right)\left(ab+bc+ca\right)-abc\right]\)
\(=p^3-3pq+3r\)
--------------------------------------
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\right]^2-2\left[\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\right]\)
\(=\left(p^2-2q\right)^2-2\left(q^2-2pr\right)\)
\(=p^4-4p^2q+2q^2+4pr\)
Xem thêm các đẳng thức thông dụng tại: https://bit.ly/3hllKCq
Lời giải:
Ta có: $a^2+b^2-2ab=(a-b)^2\geq 0$ với mọi $a,b$
$\Leftrightarrow ab\leq \frac{a^2+b^2}{2}$
Do đó: $a^2+b^2=4+ab\leq 4+\frac{a^2+b^2}{2}\Rightarrow a^2+b^2\leq 8(*)$
Mặt khác:
Từ đkđb suy ra $2(a^2+b^2)=2(4+ab)$
$\Leftrightarrow 3(a^2+b^2)=8+(a+b)^2\geq 8$
$\Rightarrow a^2+b^2\geq \frac{8}{3}(**)$
Từ $(*); (**)\Rightarrow$ đpcm.
tính ra bạn ấy hỏi vào năm 2016 khi có người trả lòi thì đã là năm 2020
Rút \(b=3-a\Rightarrow2\ge b\ge1\left(\text{vì }a,b\le2\right)\)
Tương tự: \(2\ge a\ge1\). Do đó:
\(\left(2-a\right)\left(a-1\right)+\left(2-a\right)\left(b-1\right)\ge0\)\(\Leftrightarrow5\ge a^2+b^2\)
Đẳng thức xảy ra khi \(\left(a;b\right)=\left\{\left(2;1\right);\left(1;2\right)\right\}\)