chứng minh hai số a và b không chia hết cho 2 nhưng (a+b) chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì số chẵn >3 khi chia luông dư một, số lẻ thì dư hai
mà chẵn.lẻ=chẵn
a khác b nên ab-1 chia hết cho 3
Cách hai: vì một số lí do nào đó nên (ab-1) chia hết cho3
Ví 1 số :2 dư 0 hoặc 1 mà (a+b) ko chia hết cho 2 => (a+b) :2 dư 1=>1 trong 2 số phải chia hết cho2
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
Vì a chia hết cho 3 => a2 chia hết cho 9
Vì b chia hết cho 3 => b2 chia hết cho 9
Vì a, b chia hết cho 3 => ab chia hết cho 3.3 = 9
=> a2 + ab + b2 chia hết cho 9
a) Chia hết cho 2: 500; 580
Chia hết cho 5: 540; 550
Chia hết cho 3: 300; 360
Chia hết cho 9: 540; 450
b) Vừa chia hết cho 2 vừa chia hết cho 5: 500; 600
c) Chia hết cho 5 nhưng không chia hết cho 2: 405; 505
Ta có: a\(⋮̸\)2 => a + 1 ⋮ 2 ; b \(⋮̸\)2 => b + 1 ⋮ 2
=> a + 1 + b + 1 ⋮ 2 => a + b + 2 ⋮ 2 mà 2 ⋮ 2 => a + b ⋮ 2.
=> đpcm.
Vậy ta chứng minh được hai số a và b \(⋮̸\) 2 nhưng a + b ⋮ 2
a là số không chia hết cho 2\(\Rightarrow\)a có dạng:2k+1
b cũng là số không chia hết cho 2\(\Rightarrow\)b có dạng 2l+1
\(\Rightarrow a+b=\left(2k+1\right)+\left(2l+1\right)\)
\(=2k+1+2l+1\)
\(=2k+2l+2\)
\(=2\left(k+l+1\right)⋮2\left(đpcm\right)\)
nhớ t.i.c.k đúng cho mk nha