K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2015

x^2-8x+7=0

x^2-x-7x+7=0

x(x-1)-7(x-1)=0

(x-7)(x-1)=0

=> x-7=0 hay x-1=0

x=7 hay x=1. Vì x là số nguyên tố nên chỉ có 7 thỏa mãn. Vậy x=7

13 tháng 4 2018

(x – 2)2 – x2 – 8x + 3 ≥ 0

ó x2 – 4x + 4 – x2 – 8x + 3 ≥ 0

ó -12x + 7 ≥ 0

ó x ≤ 7/12

Vậy nghiệm của bất phương trình là x ≤ 7/12

Nên số nguyên lớn nhất thỏa mãn bất phương trình là x = 0

Đáp án cần chọn là: B

12 tháng 8 2018

Ta có:

8 x . 2 1 - x 2 > 2 2 x ⇔ 2 3 x + 1 - x 2 > 2 x ⇔ 3 x + 1 - x 2 > x ⇔ x 2 - 2 x - 1 < 0 ⇔ 1 - 2 < x < 1 + 2

Mà x ∈ ℝ ⇒ x ∈ 1 ; 2 . Bất phương trình đã cho có 2 nghiệm nguyên dương.

Chọn đáp án C.

25 tháng 4 2017

Đáp án C

3 tháng 6 2019

Chọn: C

10 tháng 3 2016

\(x\left(x+1\right)=p\)  p>1 ; x+1 > x mà p là snt => x=1

NV
24 tháng 12 2021

\(\Leftrightarrow x^2-1=6y^2\)

Do \(6y^2\) chẵn và 1 lẻ \(\Rightarrow x^2\) lẻ \(\Rightarrow x\) lẻ \(\Rightarrow x=2k+1\)

\(\Rightarrow\left(2k+1\right)^2-1=6y^2\)

\(\Rightarrow4\left(k^2+k\right)=6y^2\)

\(\Rightarrow2\left(k^2+k\right)=3y^2\)

Do 2 chẵn  \(\Rightarrow3y^2\) chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn

Mà y là SNT \(\Rightarrow y=2\)

Thay vào pt đầu: 

\(x^2+1=6.2^2+2\Rightarrow x=5\)

Vậy (x;y)=(5;2)

25 tháng 3 2022

Ta có: \(x^2-1=2y^2\)

Vì \(2y^2\) là số chẵn ⇒\(x^2\) là số lẻ ⇒ x là số lẻ

⇒ x= 2k+1

Ta có: \(\left(2k+1\right)^2-1=2y^2\)

⇒ \(4\left(k^2+k\right)=2y^2\)

\(2\left(k^2+k\right)=y^2\)

Vì 2 là số chẵn ⇒ \(y^2\) là số chẵn ⇒ y là số chẵn 

Mà y là số nguyên tố ⇒ y = 2

Ta lại có: \(x^2-1=2.2^2\)

⇒ \(x^2-1=8\)

\(x^2=8+1=9\)

⇒ x= -3 hoặc 3 

Vì x là số nguyên tố nên x =3

Vậy x=3, y=2