Cho hình thang ABCD (AB//CD). M, N thuộc AB, CD sao
cho AM =2 MB , DN = 2 NC. Chứng minh ba đường thẳng AD,
BC, MN đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AMCN có :
AM = CN ( VÌ DN = MB )
AM // CN ( AB//BC )
Suy ra AMCN là HBH ( 2 cạnh đối song song và bằng nhau )
Ta có AC cắt BD tại O ( đường chéo hbh ABCD ) (1 )
AB cắt MN tại O ( đường chéo hbh AMCN ) (2 )
Từ (1 ) và (2) suy ra AC, Mn, BD đồng quy
Gọi I là giao của AC và BD
Ta sẽ chứng minh MN cũng đi qua I
Ta có: AB // CD => \(\frac{AI}{IC}=\frac{BI}{ID}=\frac{AB}{DC}=\frac{\frac{2}{3}AB}{\frac{2}{3}DC}=\frac{AM}{NC}\)
Xét 2 tam giác: AMI và CNI có:
\(\hept{\begin{cases}\frac{AM}{NC}=\frac{AI}{IC}\left(cmt\right)\\\widehat{MAI}=\widehat{NCI}\left(soletrong\right)\end{cases}}\)
\(\Rightarrow\widehat{AIM}=\widehat{NIC}\Rightarrow\overline{M,I,N}\) => đpcm
-OM cắt DC tại N'.
\(\dfrac{AM}{DN}=\dfrac{MB}{NC}=\dfrac{AM+MB}{DN+BC}=\dfrac{AB}{DC}\)
-Xét △ODN' có: AM//DN'.
\(\Rightarrow\dfrac{AM}{DN'}=\dfrac{OM}{MN'}\) (hệ quả định lí Ta-let) (1)
-Xét △OCN' có: BM//CN'.
\(\Rightarrow\dfrac{BM}{CN'}=\dfrac{OM}{MN'}\) (định lí Ta-let) (2)
-Từ (1) và (2) suy ra:
\(\dfrac{AM}{DN'}=\dfrac{BM}{CN'}=\dfrac{AM+BM}{CN'+DN'}=\dfrac{AB}{CD}\)
\(\Rightarrow\dfrac{AM}{CN'}=\dfrac{BM}{DN'}=\dfrac{AM}{CN}=\dfrac{BM}{DN}\)
\(\Rightarrow CN=CN';DN=DN'\)
\(\Rightarrow N\equiv N'\)
-Vậy MN đi qua điểm O.
Gọi K là giao điểm của AD và BC
F là giao điểm của KM và DC
Có \(AM=2MB\Rightarrow AM=\dfrac{2}{3}AB\)
Do AB//DC. Áp dụng định lý Thales có:
\(\dfrac{AM}{DF}=\dfrac{KM}{KF}\)
\(\dfrac{MB}{FC}=\dfrac{KM}{KF}\)
\(\Rightarrow\dfrac{AM}{DF}=\dfrac{MB}{FC}\)
ADTCDTSBN có: \(\dfrac{AM}{DF}=\dfrac{MB}{FC}=\dfrac{AM+MB}{DF+FC}=\dfrac{AB}{DC}\)
Do đó \(\dfrac{AM}{DF}=\dfrac{AB}{DC}\)
\(\Leftrightarrow\dfrac{\dfrac{2}{3}AB}{DF}=\dfrac{AB}{DC}\Leftrightarrow\dfrac{2AB}{3DF}=\dfrac{AB}{DC}\Leftrightarrow DF=\dfrac{2}{3}DC\) (1)
mà \(DN=2NC\Rightarrow DN=\dfrac{2}{3}DC\) (2)
Do \(N;F\in DC\).Từ (1) và (2) \(\Rightarrow N\equiv F\)
\(\Rightarrow\) K;M;N thẳng hàng
\(\Rightarrow AD;BC;MN\) đồng quy tại K