các bạn giúp mình với (x^4-1)^2+(x^2+1)^2
cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x-3}{x+1}=\dfrac{x^2}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)
Suy ra: \(x^2-4x+3-x^2=0\)
\(\Leftrightarrow-4x=-3\)
hay \(x=\dfrac{3}{4}\)(thỏa ĐK)
Vậy: \(S=\left\{\dfrac{3}{4}\right\}\)
\(C=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.....\dfrac{48}{49}.\dfrac{49}{50}=\dfrac{1}{50}\)
Đề ko rõ ràng \(\sqrt{x^2}+x+\dfrac{1}{4}\) hay \(\sqrt{x^2+x+\dfrac{1}{4}}\)??
ta có: \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{x}.\)
\(A=1+\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+...+\frac{1}{x}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2.2}+...+\frac{1}{x:2}\)
\(\Rightarrow2A-A=2-\frac{1}{x}\)
\(A=2-\frac{1}{x}=\frac{4095}{2048}\)
=> 1/x = 1/2048
=> x = 2048 ( 2048 = 211 )
\(2A=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{2}{x}\)
=> \(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{2}{x}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{2}{x}+\frac{1}{x}\right)\)
=> \(A=2-\frac{1}{x}\)
Giải phương trình:
\(2-\frac{1}{x}=\frac{4095}{2048}\)
\(\frac{1}{x}=2-\frac{4095}{2048}\)
\(\frac{1}{x}=\frac{1}{2048}\)
x=2048
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x^2-2x}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x^2-2x\)
\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)
Cho mình sửa lại nhé:
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
1, Ta có :
\(x+\frac{3}{5}=\frac{4}{7}\div\frac{8}{21}\)
\(x+\frac{3}{5}=\frac{4}{7}\times\frac{21}{8}\)
\(x+\frac{3}{5}=\frac{3}{2}\)
\(x=\frac{3}{2}-\frac{3}{5}\)
\(x=\frac{15}{10}-\frac{6}{10}\)
\(x=\frac{9}{10}\)
Vậy x = \(\frac{9}{10}\)
2, Ta có :
\(\frac{2}{3}+\frac{3}{4}\div x=-\frac{1}{6}\)
\(\frac{3}{4}\div x=-\frac{1}{6}-\frac{2}{3}\)
\(\frac{3}{4}\div x=-\frac{1}{6}-\frac{4}{6}\)
\(\frac{3}{4}\div x=-\frac{5}{6}\)
\(x=\frac{3}{4}\div\left(-\frac{5}{6}\right)\)
\(x=\frac{3}{4}\times\left(-\frac{6}{5}\right)\)
\(x=-\frac{9}{10}\)
Vậy x = \(-\frac{9}{10}\)
`(x^4-1)^2+(x^2+1)^2`
`=x^8-2x^4+1+x^4+2x^2+1`
`=x^8-x^4+2x^2+2`
\(\left(x^4-1\right)^2+\left(x^2+1\right)^2=\left(x^2-1\right)^2.\left(x^2+1\right)^2+\left(x^2+1\right)^2\)
\(=\left(x^2+1\right)^2\left[\left(x^2-1\right)^2+1\right]=\left(x^2+1\right)^2\left(x^4-2x^2+2\right)\)