K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

Ta có:

\(A=\frac{2017\cdot2018-1}{2017\cdot2018-2}\)

\(A=\frac{2017\cdot2018-2+1}{2017\cdot2018-2}\)

\(A=\frac{2017\cdot2018-2}{2017\cdot2018-2}+\frac{1}{2017\cdot2018-2}\)

\(A=1+\frac{1}{2017\cdot2018-2}\)

Ta có phân số trung gian là 1. Ta có:
\(A>1\) ; \(B< 1\)

\(\Rightarrow A>1>B\)

\(\Rightarrow A>B\)

Vậy A>B
Chúc em học tốt!

22 tháng 7 2018

\(\Rightarrow\text{❤️✔✨♕✨✔️❤ }\Leftarrow\)

\(\text{Ta có :}\)

\(A=\frac{2017\cdot2018-1}{2017\cdot2018-2}=\frac{4070305}{4070304}=1\frac{1}{4070304}\)

\(B=\frac{2017}{2018}\)

\(\text{Vì : }1\frac{1}{4070304}>1\text{ mà }\frac{2017}{2018}< 1\text{ nên }1\frac{1}{4070304}>\frac{2017}{2018}\)

\(\Rightarrow A>B\)

6 tháng 4 2018

id nhu 1 tro dua

4 tháng 7 2018

= 1 nhé bạn

4 tháng 7 2018

\(\frac{2016+2017.2018}{2017.2019-1}\)

\(\frac{2016+2017.2018}{2017.2018+2017-1}\)

\(\frac{2016+2017.2018}{2017.2018+2016}\)

= 1

30 tháng 10 2023

A = 1.2 + 2.3 + 3.4 + ... + 2017.2018

⇒ 3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2017.218.(2019 - 2016)

= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2017.2018.2019 - 2016.2017.2018

= 2017.2018.2019

= 2017.2018.2019

B = 2018³/3 ⇒ 3B = 2018³

Ta có:

2017.2019 = (2018 - 1).(2018 + 1)

= 2018² - 1²

= 2018.2018 - 1 < 2018.2018

⇒ 2017.2018.2019 < 2018.2018.2018

⇒ 3A < 3B

⇒ A < B

3 tháng 12 2017

Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)

Vậy A<B

13 tháng 7 2017

A=24783,14746B=49566,29188

Vậy A<B

14 tháng 7 2017

Ta thấy \(A=\frac{2018-2017}{2018+2017}=\frac{2018^2-2017^2}{\left(2018+2017\right)^2}=\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}\)

Mà \(2018^2+2.2018.2017+2017^2>2018^2+2017^2\)

\(\Rightarrow\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}< \frac{2018^2-2017^2}{2018^2+2017^2}\)

Vậy A<B

11 tháng 6 2018

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

5 tháng 5 2018

=.....nha các bn. k mình nha

5 tháng 5 2018

Ta có : \(B=\frac{2015+2016+2017}{2016+2017+2018}\) \(=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

       \(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

        \(\frac{2017}{2018}>\frac{2017}{2016+2017+2016}\)

Cộng vế theo vế, ta có : 

\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

31 tháng 8 2020

\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(C=1-\frac{1}{2018}\)

\(C=\frac{2017}{2018}\)

31 tháng 8 2020

\(C=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+.....+\frac{1}{2017x2018}\)

Ta thấy \(\frac{1}{1x2}=\frac{1}{1}-\frac{1}{2}\)

               \(\frac{1}{2x3}=\frac{1}{2}-\frac{1}{3}\)

      .............................................

           \(\frac{1}{2017x2018}=\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow C=\frac{1}{1}-\frac{1}{2018}\)

\(\Rightarrow C=\frac{2017}{2018}\)

Chúc bạn học tốt nhớ k mình nhá