CMR A=2n+6n+8n+9n chia hết cho 5 khi và chỉ khi n không chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(5n+7\right)\left(4n+6\right)\)
\(=\left(5n+7\right)4n+\left(5n+7\right)6\)
\(=20n^2+28n+30n+32\)
\(=20n^2+58n+32\)
Vì \(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)
b) \(\left(8n+1\right)\left(6n+5\right)\)
\(=\left(8n+1\right)6n+\left(8n+1\right)5\)
\(=48n^2+6n+40n+5\)
\(=48n^2+46n+5\)
Vì \(\left(48n^2+46n\right)⋮2\) mà \(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)
c) \(n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n-2\right)\)
\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\) và \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)
a, Ta có 8n - 59 = ( 2n -16 ) + ( 2n -16 ) + ( 2n - 16 ) + ( 2n - 16 ) + 5
2n - 16 luôn luôn chia hết cho 2n - 16
=> 4.(2n-16) chia hết cho 2n-16 <=> 5 chia hết cho 2n - 16
=> 2n - 16 thuộc Ư(5) = { 1;-1;5;-5 }
Tự làm nốt
b, tương tự
c, 6n - 46 = (2n-18) + (2n-18) + (2n-18) + 8
... Tiếp tục :))
a ,\(8n-59⋮2n-16\)
Mà \(2n-16⋮2n-16\)
\(\Rightarrow4\left(2n-16\right)⋮2n-16\)
\(\Rightarrow8n-64⋮2n-16\)
\(\Rightarrow\left(8n-59\right)-\left(8n-64\right)⋮2n-16\)
\(\Rightarrow8n-59-8n+64⋮2n-16\)
\(\Rightarrow5⋮2n-16\)
\(\Rightarrow2n-16\inƯ\left(5\right)\)
\(\Rightarrow2n-16\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow2n\in\left\{17;15;21;11\right\}\)
\(\Rightarrow\) KHÔNG CÓ SỐ NÀO THỎA MÃN CỦA 2n
\(\Rightarrow x\in\varnothing\)
\(a,2n+3⋮6n+4\Leftrightarrow6n+9⋮6n+4\Leftrightarrow6n+9-6n-4⋮6n-4\Leftrightarrow5⋮6n-4\Leftrightarrow6n-4\in\left\{-5;5;1;-1\right\}\Leftrightarrow6n\in\left\{-1;9;5;-3\right\}\Leftrightarrow n\in\left\{-\dfrac{1}{6};1,5;\dfrac{5}{6};-0,5\right\}\)
a) \(\Rightarrow\left(6n+5\right)-2\left(3n-1\right)⋮3n-1\)
\(\Rightarrow\left(6n+5\right)-\left(6n-2\right)⋮3n-1\)
\(\Rightarrow6n+5-6n+2⋮3n-1\)
\(\Rightarrow7⋮3n-1\)
\(\Rightarrow3n-1\inƯ\left(7\right)=\left(1;-1;7;-7\right)\)
ta có bảng sau :
3n-1 1 -1 7 -7
n L 0 L -2
mà \(n\in Z\)
\(\Rightarrow n\in\left(0;-2\right)\)
b) \(\Rightarrow\left(2n-1\right)-2\left(n+1\right)⋮n+1\)
\(\Rightarrow\left(2n-1\right)-\left(2n+2\right)⋮n+1\)
\(\Rightarrow2n-1-2n-2⋮n+1\)
\(\Rightarrow-1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(-1\right)=\left(1;-1\right)\)
ta có bảng sau
n+1 1 -1
n 0 -2
mà \(n\in Z\)
KL :\(n\in\left(0;-2\right)\)
a/
\(x+6y⋮17\Rightarrow5\left(x+6y\right)=5x+30y⋮17\)
\(5x+47y=\left(5x+30y\right)+17y\)
\(5x+30y⋮17\left(cmt\right);17y⋮17\Rightarrow5x+47y⋮17\)
b/
\(3x+16y⋮5\Rightarrow2\left(3x+16y\right)=6x+32y=\left(5x+30y\right)+\left(x+2y\right)⋮5\)
Mà \(5x+30y⋮5\Rightarrow x+2y⋮5\)