K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

Ta có 

1/101 > 1/150

1/102> 1/150

...>1/150

1/150 = 1/150

=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3

21 tháng 7 2018

ta thấy 

1/101>1/150

1/102>1/150

...

1/150=1/150

=> 1/101+1/102+...+1/150>1/150+....+1/150(50 sô hạng)

=>1/101+1/102+...+1/150>1/3

1/151>1/200+

1/152>1/200

....

1/200=1/200

=>1/151+1/152+...+1/200>1/200+...+1/200(50 sô hạng)

=> 1/151+1/152+...+1/200>1/4

=> 1/101+...+1/200>1/3+1/4=7/12

27 tháng 7 2018

a )   Số lượng số của dãy số trên là : 

\(\left(200-101\right):1+1=100\) ( số ) 

Do \(100⋮2\)nên ta nhóm dãy số trên thành 2 nhóm như sau : 

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)

\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150};\frac{1}{150}=\frac{1}{150}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\left(1\right)\)

\(\frac{1}{151}>\frac{1}{200};\frac{1}{152}>\frac{1}{200};...;\frac{1}{199}>\frac{1}{200};\frac{1}{200}=\frac{1}{200}\)

\(\Rightarrow\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{2}\left(3\right)\)

\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};...;\frac{1}{199}< \frac{1}{100};\frac{1}{200}< \frac{1}{100}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}.100=1\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrowđpcm\)

b )  Số lượng số dãy số trên là : 

\(\left(150-101\right):1+1=50\)( số ) 

Ta có : \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};\frac{1}{103}>\frac{1}{150};...;\frac{1}{150}=\frac{1}{150}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)

\(\Rightarrowđpcm\)

AH
Akai Haruma
Giáo viên
25 tháng 10

Lời giải:
Ta thấy:

$\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{150}> \frac{1}{150}+\frac{1}{150}+\frac{1}{150}+....+\frac{1}{150}=\frac{50}{150}=\frac{1}{3}$ (1)

$\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}> \frac{1}{200}+\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}=\frac{50}{200}=\frac{1}{4}$ (2)

Cộng kết quả (1) và (2) theo vế ta được:

$\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}> \frac{1}{3}+\frac{1}{4}=\frac{7}{12}$

\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

\(=\left(\frac{1}{101}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+...+\frac{1}{200}\right)>\frac{1}{150}+...+\frac{1}{150}+\frac{1}{200}+...+\frac{1}{200}\)(50 số 1/150;1/200)

\(=\frac{1}{150}.50+\frac{1}{200}.50=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

=>đpcm

2 tháng 3 2021

Ta có:

\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\) (có 50 số hạng) 

⇔ \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}>\dfrac{1}{3}\)                   \(\left(1\right)\)

\(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\) (có 50 số hạng)

⇔ \(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{4}\)                    \(\left(2\right)\)

Từ (1) và (2), cộng vế theo vế. Ta được:

\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}+\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\) 

⇒ \(ĐPCM\)

2 tháng 3 2021

Cậu nghĩ đâu mà hay vậy

20 tháng 11 2019

CÂU HỎI LÂU NHẤT