K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

\(14\cdot\sqrt{x}-5\cdot\sqrt{x}< \frac{15}{2}\)

\(\Leftrightarrow9\cdot\sqrt{x}< \frac{15}{2}\Leftrightarrow\sqrt{x}< \frac{5}{6}\Leftrightarrow x< \left(\frac{5}{6}\right)^2=\frac{25}{36}\)

20 tháng 7 2018

Ta có  14 \(\sqrt{x}\)-  5  \(\sqrt{x}\)<  \(\frac{15}{2}\)

          => \(\sqrt{x}\)(14-5)    < \(\frac{15}{2}\)

          =>\(\sqrt{x}\)9   <    \(\frac{15}{2}\)

          => \(\sqrt{x}\)<   \(\frac{15}{2}\):9

          => x  <  \(\left(\frac{5}{6}\right)^2\)

         => x < \(\frac{25}{36}\)

Vậy x <  \(\frac{25}{36}\)

20 tháng 7 2018

\(9\sqrt{x}< \frac{15}{2}\Leftrightarrow\sqrt{x}=\frac{5}{6}\Leftrightarrow x=\frac{25}{36}\)

4 tháng 10 2019

\(a,\)\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne9;x\ne25\end{cases}}\)

\(P=\frac{8\sqrt{x}-x-31}{x-8\sqrt{x}+15}\)\(-\frac{\sqrt{x}+15}{\sqrt{x}-3}-\frac{3\sqrt{x}-1}{5-\sqrt{x}}\)

\(=\frac{8\sqrt{x}-x-31}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)\(-\frac{\sqrt{x}+15}{\sqrt{x}-3}+\frac{3\sqrt{x}-1}{\sqrt{x}-5}\)

\(=\frac{8\sqrt{x}-x-31}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}-\)\(\frac{\left(\sqrt{x}+15\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)\(+\frac{\left(3\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{8\sqrt{x}-x-31-x-10\sqrt{x}+75+3x-10\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{x-12\sqrt{x}+47}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)

\(\Rightarrow\)Sai đề không cậu ưi 

9 tháng 3 2018

các bn lm đến đâu cx dc miễn là lm hộ mk cái ạ, ai đang lm vào nhắn tin vs mk để mk bít nha

19 tháng 2 2024

a; \(-\dfrac{8}{3}+\dfrac{7}{5}-\dfrac{71}{15}< x< -\dfrac{13}{7}+\dfrac{19}{14}-\dfrac{7}{2}\)

              -\(\dfrac{19}{15}\) - \(\dfrac{71}{15}\) < \(x\) < -\(\dfrac{1}{2}\) - \(\dfrac{7}{2}\)

              -6 < \(x\) < -4

             vì \(x\) \(\in\) Z nên \(x\) = -5

5 tháng 9 2019

\(A=\frac{-7x^2}{\sqrt{x-3}-2}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}\sqrt{x-3}-2\ne0\\x-3>0\end{cases}}\)

\(\sqrt{x-3}-2\ne0\Rightarrow\sqrt{x-3}\ne2\)

\(\Rightarrow x-3\ne4\Leftrightarrow x\ne7\)

\(x-3>0\Leftrightarrow x>3\)

Vậy điều kiện xác định của A là \(\hept{\begin{cases}x>3\\x\ne7\end{cases}}\)

5 tháng 9 2019

ĐKXĐ:

\(\sqrt{x-3}\ge0\Rightarrow\sqrt{x-3}-2\ge-2\)

\(\Rightarrow x\ge3\) 

Mà \(\sqrt{x-3}-2\ne0\) \(\Rightarrow x\ne7\)

Vậy \(x\ge3\) và \(x\ne7\)

18 tháng 2 2020

Ta có :

\(B=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}\)

\(=\left(\frac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x-2}\right)}-\frac{1}{\left(\sqrt{x}+2\right)^2}\right).\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right).\left(\sqrt{x}+2\right)\)

\(=\frac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}.\left(\sqrt{x}+2\right)\)

\(=\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

26 tháng 7 2019

1) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\\ =\left(\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\\ =\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

b) \(P=\frac{\sqrt{x}-1}{\sqrt{x}+2}< 0\)

Dễ thấy \(\sqrt{x}+2\ge2>0\forall x\ge0\)

Nên để \(P< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)

Vậy với \(0\le x< 1\)thì P<0

26 tháng 7 2019

Hỏi đáp Toán

(Câu trả lời bằng hình ảnh)

12 tháng 9 2019

Vũ Minh TuấnLê Thị Thục Hiền@Nk>↑@

12 tháng 9 2019

Đề hơi sai sai khocroi

14 tháng 9 2019

\(\left(\frac{2}{\sqrt{3}+1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right).\frac{1}{\sqrt{3}+5}\)

= \(\left[\frac{2\left(\sqrt{3}+1\right)}{2}+\frac{2\left(\sqrt{3}+2\right)}{1}+\frac{15\left(3+\sqrt{3}\right)}{6}\right].\frac{1}{\sqrt{3}+5}\)

= \(\left[\frac{2\left(\sqrt{3}+1\right)-6\left(\sqrt{3}+2\right)+15\left(\sqrt{3}+3\right)}{2}\right].\frac{1}{\sqrt{3}+5}\)

= \(\left[\frac{2\sqrt{3}+2-6\sqrt{3}-12+5\sqrt{3}+15}{2}\right]\).\(\frac{1}{\sqrt{3}+5}\)

= \(\frac{\sqrt{3}+5}{2}.\frac{1}{\sqrt{3}+5}\)

= \(\frac{1}{2}\)

2 tháng 8 2019

1) Để ý rằng : \(x\sqrt{x}-1=\sqrt{x^3}-\sqrt{1^3}=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)

\(P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)

\(P=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

2) \(x=28-6\sqrt{3}=\left(3\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=3\sqrt{3}-1\)

Thay vào P ta được :

\(P=\frac{3\sqrt{3}-1}{28-6\sqrt{3}+3\sqrt{3}-1+1}\)

\(P=\frac{3\sqrt{3}-1}{28-3\sqrt{3}}\)

3) \(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}< \frac{1}{3}\)

\(\Leftrightarrow x+\sqrt{x}+1>3\sqrt{x}\)

\(\Leftrightarrow x-2\sqrt{x}+1>0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2>0\)

BĐT cuối luôn đúng \(\forall x>1\)

Ta có đpcm

4) \(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{2}{7}\)

\(\Leftrightarrow2x+2\sqrt{x}+2=7\sqrt{x}\)

\(\Leftrightarrow2x-5\sqrt{x}+2=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{1}{4}\end{matrix}\right.\)

Vậy...

5) \(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(\Leftrightarrow Px+P\sqrt{x}+P=\sqrt{x}\)

\(\Leftrightarrow x\cdot P+\sqrt{x}\left(P-1\right)+P=0\)

Phương trình trên có nghiệm khi \(\Delta\ge0\)

\(\Leftrightarrow\left(P-1\right)^2-4P^2\ge0\)

\(\Leftrightarrow P^2-2P+1-4P^2\ge0\)

\(\Leftrightarrow-3P^2-2P+1\ge0\)

\(\Leftrightarrow-3\left(P^2+\frac{2}{3}P-\frac{1}{3}\right)\ge0\)

\(\Leftrightarrow P^2+\frac{2}{3}P-\frac{1}{3}\le0\)

\(\Leftrightarrow P^2+2\cdot P\cdot\frac{1}{3}+\frac{1}{9}-\frac{4}{9}\le0\)

\(\Leftrightarrow\left(P+\frac{1}{3}\right)^2\le\left(\frac{2}{3}\right)^2\)

\(\Leftrightarrow P+\frac{1}{3}\le\frac{2}{3}\)

\(\Leftrightarrow P\le\frac{1}{3}\)

Vậy \(maxP=\frac{1}{3}\Leftrightarrow x=1\)??

Đoạn này sai sai ta ?

2 tháng 8 2019

Akai Haruma câu 5 sai sai ha chị ?