K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có BM là phân giác

nên AM/AB=CM/BC

=>AM/15=CM/10

=>AM/3=CM/2=(AM+CM)/(3+2)=15/5=3

=>AM=9cm; CM=6cm

b: BM vuông góc BN

=>BN là phân giác góc ngoài tại B

=>NC/NA=BC/BA

=>NC/(NC+15)=10/15=2/3

=>3NC=2NC+30

=>NC=30cm

a: Xét ΔABC có BM là phân giác

nên AM/AB=CM/BC

=>AM/15=CM/10

=>AM/3=CM/2=(AM+CM)/(3+2)=15/5=3

=>AM=9cm; CM=6cm

b: BM vuông góc BN

=>BN là phân giác góc ngoài tại B

=>NC/NA=BC/BA

=>NC/(NC+15)=10/15=2/3

=>3NC=2NC+30

=>NC=30cm

28 tháng 2 2022

a Tam giác ABC cân tại A => AB=AC=15

Tia p/g BM

=> Theo tính chất đương p/g ta có

AMAB=MCBCAMAB=MCBC

MC=AC-AM

=>AMAB=AC−AMBCAMAB=AC−AMBC

AM15=15−AM10AM15=15−AM10

=> AM= 9

=> MC=AC-AM=15-9=6

BM vuông góc BN

=> BM là tia p/g góc ngoài tại B

=>NCNA=BCBANCNA=BCBA

=> NC.BA=BC.NA

NC.BA-BC.NA=0

NC.BA-BC(AC+CN)= 0

=> NC.15-10(15+CN)=0

=> NC=30

28 tháng 2 2022

hơi rối

7 tháng 3 2016

to cung dang mac

15 tháng 5 2021

ờ ờ ờ sao khó thế nhỉ

14 tháng 2 2016

moi hok lop 6

a: Xét ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/15=CD/10

=>AD/3=CD/2=(AD+CD)/(3+2)=15/5=3

=>AD=9cm; CD=6cm

b: BE vuông góc BD

=>BE là phân giác góc ngoài tại B

=>EC/EA=BC/BA

=>EC/(EC+15)=10/15=2/3

=>3EC=2EC+30

=>EC=30cm

a: \(AB=\sqrt{15^2-12^2}=9\left(cm\right)\)

b: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có

BM chung

góc ABM=góc NBM

=>ΔBAM=ΔBNM

=>MA=MN

c: Xét ΔBDC có

BE là đừog cao, là phân giác

nên ΔBDC cân tại B

=>BD=BC

BA+AD=BD

BN+NC=BC

mà BD=BC; BA=BN

nên AD=NC

a: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là phân giác của góc BAC

c: ΔABC cân tại A

mà AH là trung tuyến

nên AH là trung trực của BC

=>I nằm trên trung trực của BC

=>IB=IC

d: Xet ΔABN có góc ABN=góc ANB=góc MBC

nên ΔABN can tại A

=>AB=AN

e: Xét ΔABC co

BM,AM là phân giác

nên M là tâm đừog tròn nội tiếp

=>CM là phân giác của góc ACB

Xét ΔHCM vuông tại H và ΔKCM vuông tại K có

CM chung

góc HCM=góc KCM

=>ΔHCM=ΔKCM

=>MH=MK

8 tháng 3 2022

a, Vì BD là pg nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{AC}{AB+BC}=\dfrac{15}{25}=\dfrac{3}{5}\Rightarrow DC=6cm;AD=9cm\)

b, Ta có BD là pg, mà BD vuông BE 

nên BE là pg ngoài tam giác ABC 

\(\dfrac{EC}{AC}=\dfrac{AB}{BC}\Rightarrow EC=\dfrac{AB.AC}{BC}=\dfrac{45}{2}cm\)

 

a: Xét ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/15=CD/10

=>AD/3=CD/2=(AD+CD)/(3+2)=15/5=3

=>AD=9cm; CD=6cm

b: BE vuông góc BD

=>BE là phân giác góc ngoài tại B

=>EC/EA=BC/BA

=>EC/(EC+15)=10/15=2/3

=>3EC=2EC+30

=>EC=30cm

a: EM=căn 10^2-6^2=8cm

b: góc BAC=180-2*40=100 độ

góc BAC>góc ABC=góc ACB

=>BC>AC=AB

c: Xét ΔMBE vuông tại E và ΔNCF vuông tại F có

BE=CF

góc MBE=góc NCF

=>ΔMBE=ΔNCF

=>EM=FN