Tìm giá trị lớn nhất
D = 25x(x.7)-7
Thanks
Đang học hằng đẳng thức tt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề \(D=25x\left(x.7\right)-7\)
\(\Rightarrow D=25x^2.7-7\)
\(\Rightarrow D=7\left(25x^2-1\right)\)
Do \(25x^2\ge0;1>0\Rightarrow25x^2-1\le-1\)
\(\Rightarrow D\le-7\)
Dấu "=" xảy ra khi \(x=0\)
Vậy Max D = -7 <=> x = 0
1. We ( donate ) ____ money for disabled people since 2012
2. THe young ( help _____ the poor with ( provide ) ___ money , work and even accommidation for 2 years .
3. We can ( help ) ___ people in a flooded area by ( take ) ___ them to the higher and drier area .
hộ e với
Ta có :
\(4x^2+12x+10>0\)
\(\Leftrightarrow\)\(\left(4x^2+12x+9\right)+1>0\)
\(\Leftrightarrow\)\(\left[\left(2x\right)^2+2.2x.3+3^2\right]+1>0\)
\(\Leftrightarrow\)\(\left(2x+3\right)^2+1\ge1>0\)
Vậy \(4x^2+12x+10\) luôn dương với mọi giá trị x
Chúc bạn học tốt ~
ta có \(25x^2-20ax+5a^2=25x^2-20ax+4a^2+a^2=\left(5x-2a\right)^2+a^2\ge a^2\)
=>\(\frac{a^2}{25x^2-20ax+5a^2}\le\frac{a^2}{a^2}=1\Rightarrow P\le1\)
dấu = xảy ra <=> x=2/5.a
\(\sqrt{25x^2}=\left|5x\right|=-5x\left(x< 0\right)\)
\(\sin\alpha=\sqrt{1-\dfrac{4}{9}}=\dfrac{\sqrt{5}}{3}\)
a. \(x^2-10x+25=\left(x-5\right)^2\)
b.\(4-4x^2+x^4=\left(2-x^2\right)^2\)
c. \(x^2-6y+9y^2=\left(x-3y\right)^2\)
d. \(\left(2x+y^2\right)\left(2x-y^2\right)=4x^2-y^4\)
\(a\text{) }pt\Leftrightarrow\left(y^2+2y+1\right)+\left[\left(2^x\right)^2-2.2^x+1\right]=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)
\(\Leftrightarrow y+1=0\text{ và }2^x-1=0\)
\(\Leftrightarrow y=-1\text{ và }x=0\)
\(b\text{) }pt\Leftrightarrow\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow x+y=0\text{ và }x-1=0\text{ và }y+1=0\)
\(\Leftrightarrow x=1\text{ và }y=-1\)
\(D=25x^2.7-7\)
\(\Rightarrow D=7\left(25x^2-1\right)\)
Do \(25x^2\ge0;1>0\Rightarrow25x^2-1\le-1\Rightarrow D\le-7\)
Dấu = xảy ra khi x=0
Vậy Max D=-7 khi x=0