tìm n thuộc N để 2 số sau nguyen tố cùng nhau 18n + 3 và 21n + 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN(18n+3 và 21n+7)
=>18n+3 chia hết cho d=>(18n+3):3 chia hết cho d=>6n+1 chia hết cho d
và 21nn+7 chia hết cho d=>(21n+7):7 chia hết cho d=>3n+1 chia hết cho d=>6n+2 chia hết cho d
Do 6n+1 và 6n+2 là 2 số tự nhiên liên tiếp nên nguyên tố cùng nhau =>d=1
=>18n+3 và 21n+7 là 2 số nguyên tố cùng nhau với mọi STN n
Gọi d là UCLN(18n+3,21n+7)
\(\Rightarrow\hept{\begin{cases}18n+3⋮d\\21n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}\left(18n+3\right):3⋮d\\\left(21n+7\right):7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+1⋮d\\6n+2⋮d\end{cases}}}\)
Vì 6n+1,6n+2 là hai số tự nhiên liên tiếp nên d=1
=> 18n+3 và 21n+7 là hai số nguyên tố cùng nhau với mọi số tự nhiên n
b,
Giả sử 18n+3 và 21n+7 cùng chia hết cho số nguyên tố d
Ta có: 6(21n+7)−7(18n+3)chia het cho d \(\Rightarrow\)21chia het d\(\Rightarrow\)d \(\in\){3;7}.
Hiển nhiên d \(\ne\)3 vì 21n+7 không chia hết cho 3.
Để (18n+3,21n+7)=1 thì d\(\ne\)7 tức là 18n+3 không chia hết cho 7 nếu 18n+3−21 không chia hết cho 7
\(\Leftrightarrow\)18(n−1) không chia hết cho 7
\(\Leftrightarrow\)n−1 không chia hết cho 7
\(\Leftrightarrow\)n\(\ne\)7k+1(k\(\in\)n)
Kết luận: Với n\(\ne\)7k+1(k\(\in\)N thì 18n+3 và 21n+7 là hai số nguyên tố cùng nhau.
a,
ko bt **** nhe con cau a ban hoi ng khac thu xem
0 nha