cho tam giác abc cân tại a phân giác ah ,đường trung tuyến của ab cắt ah tại o trên ab và ac lấy điểm e và f/ae+af=ab
a, chứng minh oe=of
b,chứng minh khi điểm e và f di động trên ab và ac thì 2 đường trung trực evaf f đi qua điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong \(\Delta ABC\)cân tại A , ta có :
AH là đường p/g của góc A
\(\Rightarrow\)AH là đường trung trực của BC
OI là đường trung trực của AB
\(\Rightarrow\)O là giao điểm của 3 đường trung trực của \(\Delta ABC\)
=> OC=OA=OB
Xét \(\Delta AOC\)có:
OA=OC ( cmt )
\(\Rightarrow OAC=OCA\)
MÀ \(IAO=OAC\Rightarrow IAO=FCO\)
Xét \(\Delta OEA\)và \(\Delta OFC\)có :
AE= CF ( gt )
EAO=FOC ( cmt )
OA=OC ( cmt )
\(\Rightarrow\Delta OEA=\Delta OFFC\left(c-g-c\right)\)
\(\Rightarrow OE=OF\left(dpcm\right)\)
b, Vì OE=OF ( câu a )
\(\Rightarrow\)O thuộc đường trung trực của EF
Để chứng minh ADEF là hình chữ nhật, ta cần chứng minh các đẳng thức đường cao AH = trung tuyến AE và hình chiếu D, F của E trên AB, AC vuông góc với AB, AC.
a) Chứng minh AH = AE: Vì tam giác ABC là tam giác vuông tại A, nên đường cao AH cũng là đường cao của tam giác vuông ABC. Do đó, ta có AH = BH. Từ tam giác ABC, ta có AE là trung tuyến nên AE = EC. Vậy, AH = AE.
b) Chứng minh AD = AF: Ta có hai tam giác vuông ADE và AFE có cạnh chung AE. Vì AE là trung tuyến nên ta có DE = FE, và góc ADE = góc AFE = 90 độ (do DE và FE vuông góc với AB, AC). Do đó, ta có hai tam giác ADE và AFE đồng dạng (cạnh góc). Từ đó suy ra, AD = AF.
Vì AH = AE và AD = AF, nên tứ giác ADEF là hình chữ nhật.
c) Chứng minh BDFE là hình bình hành: Ta đã chứng minh được AD = AF, nên BD = BF (do AB < AC). Vì DE = EF (vì trung tuyến), và góc EDF = góc EBF = 90 độ (hình chiếu của E trên AB, AC vuông góc với AB, AC), nên ta có hai cạnh và một góc tương đương nhau. Do đó, tứ giác BDFE là hình bình hành.
d) Chứng minh F là trung điểm của AC: Vì AE là trung tuyến của tam giác ABC, nên F là trung điểm của AC.
Vậy, ta đã chứng minh được các yêu cầu đề bài.
a: Xét ΔEBH và ΔFCH có
EB=FC
\(\widehat{B}=\widehat{C}\)
BH=CH
Do đó: ΔEBH=ΔFCH
Suy ra: HE=HF
hay H nằm trên đường trung trực của EF(1)
Ta có: AE=AF
nên A nằm trên đường trung trực của EF(2)
Từ (1) và (2) suy ra E và F đối xứng nhau qua AH
a: Sửa đề: góc ABD=góc AED
Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>DB=DE và góc ABD=góc AED
b: Xét ΔAEF vuông tại A và ΔABC vuông tại A có
AE=AB
góc AEF=góc ABC
=>ΔAEF=ΔABC
=>AF=AC