K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

\(125.\left(-61\right).\left(-2\right)^3.\left(-1\right)^{2n}\)

\(=125.\left(-61\right).\left(-8\right).1\)

\(=-1000.\left(-61\right)\)

\(=61000\)

\(\left(-1\right)^{2n}\) :

với \(n\in N\Rightarrow2n\)là số chẵn không âm

mà số nào có số mũ chẵn cũng đều là số dương

\(\Rightarrow\left(-1\right)^{2n}\)là số dương

Tham khảo nhé~

17 tháng 7 2018

Vì n thuộc N mà 2n là một số chẵn 

Nên -1 mũ 2n luôn luôn bằng 1

Ta giải bình thường: \(125.\left(-61\right).\left(-2\right)^3.1=-7625.\left(-8\right)=61000\)

21 tháng 8 2020

a) \(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}=\left(-1\right)^{3n+1}\)

b) \(B=\left(10000-1^2\right)\left(10000-2^2\right).........\left(10000-1000^2\right)\)

\(=\left(10000-1^2\right)\left(10000-2^2\right)......\left(10000-100^2\right)....\left(10000-1000^2\right)\)

\(=\left(10000-1^2\right)\left(10000-2^2\right).....\left(10000-10000\right).....\left(10000-1000^2\right)=0\)

c) \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)..........\left(\frac{1}{125}-\frac{1}{25^3}\right)\)

\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right).....\left(\frac{1}{125}-\frac{1}{5^3}\right)......\left(\frac{1}{125}-\frac{1}{25^3}\right)\)

\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)........\left(\frac{1}{125}-\frac{1}{125}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)

d) \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-10^3\right)}\)

\(=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-1000\right)}=1999^0=1\)

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)

\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)

\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)

Ta có đpcm.

17 tháng 1 2021

Dang này thì cứ chọn số hạng có mũ cao nhất trên tử và mẫu là được. Nó là ngắt vô cùng lớn hay bé gì đấy

\(=lim\dfrac{8n^6}{3n^6}=\dfrac{8}{3}\)

NV
15 tháng 1 2021

Chia cả tử và mẫu cho \(n^5\)

\(=\lim\dfrac{\left(\dfrac{2n-n^3}{n^3}\right)\left(\dfrac{3n^2+1}{n^2}\right)}{\left(\dfrac{2n-1}{n}\right)\left(\dfrac{n^4-7}{n^4}\right)}=\lim\dfrac{\left(\dfrac{2}{n^2}-1\right)\left(3+\dfrac{1}{n^2}\right)}{\left(2-\dfrac{1}{n}\right)\left(1-\dfrac{7}{n^4}\right)}\)

\(=\dfrac{-1.3}{2.1}=-\dfrac{3}{2}\)

NA
Ngoc Anh Thai
Giáo viên
28 tháng 3 2021

a) Vế trái  \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)

               \(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)

b) Vế trái

 \(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)

              

9 tháng 9 2016

Ta có:

\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}=\frac{\left(1.3.5...2n-1\right).\left(2.4.6...2n\right)}{\left(2.4.6...2n\right)\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\)

                                \(=\frac{1.2.3.4.5.6...\left(2n-1\right).2n}{1.2.3...n\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n.2^n}\)

                                \(=\frac{1}{2^n}\)

9 tháng 9 2016

help meeeeeeeeeee khocroi