[ x - 1/2 ] + [ x - 1/6] + [ x - 1/ 12 ] +...+ [ x - 1/90] = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1
=> x+1/2+x+1/3+x+1/4-x-1/5-x-1/6=0
=> (x+x+x-x-x)+(1/2+1/3+1/4-1/5-1/6)=0
=> x+43/60=0
=> x = -43/60
câu dưới làm tương tự bạn nhé!
=> (1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9 + 1/9.10) : x = 9/20
=> (1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9 + 1/9 - 1/10) : x = 9/20
=> (1 - 1/10) : x = 9/20
=> 9/10 : x = 9/20
X = 9/10 : 9/20 = 2
A= 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
=1/(1.2)+1/(2.3)+1/(3.4)+1/(4.5)
+1/(5.6)+1/(6.7)+1/(7.8)
+1/(8.9)+1/(9.10)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.+1/5-1/6...
+1/9-1/10
=1-1/10
=9/10
thay x = a thôi đấy
chẳng động não gì cả
a)\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{2}{5}+x=\frac{3}{5}\)
\(\Rightarrow x=\frac{3}{5}-\frac{2}{5}=\frac{1}{5}\)
b)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{13}-\frac{2}{15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{2}{3}-\frac{2}{15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{8}{15}+x=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}-\frac{8}{15}=-\frac{1}{5}\)
c)\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Leftrightarrow\frac{x+1-1}{x+1}=\frac{9}{10}\)
\(\Rightarrow\frac{x}{x+1}=\frac{9}{10}\)
\(\Rightarrow x=9\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{15-13}{13.15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{15}+x=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{15}\)
\(2\times x-\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}=\frac{3}{11}\)
\(2\times x-2\times\frac{1}{12}+\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=\frac{3}{11}\)
\(2\times\left(x-\frac{1}{12}\right)+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=\frac{3}{11}\)
\(2\times\left(x-\frac{1}{12}\right)+\left(\frac{1}{3}-\frac{1}{10}\right)=\frac{3}{11}\)
\(2\times\left(x-\frac{1}{12}\right)+\frac{7}{30}=\frac{3}{11}\)
\(2\times\left(x-\frac{1}{12}\right)=\frac{13}{330}\)
\(x-\frac{1}{12}=\frac{13}{660}\)
\(x=\frac{17}{165}\)
\(2x-\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}=\frac{3}{11}\)
\(\Rightarrow2x-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)=\frac{3}{11}\)
\(\Rightarrow2x-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=\frac{3}{11}\)
\(\Rightarrow2x-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=\frac{3}{11}\)
\(\Rightarrow2x-\left(\frac{1}{2}-\frac{1}{10}\right)=\frac{3}{11}\)
\(\Rightarrow2x-\frac{2}{5}=\frac{3}{11}\)
\(\Rightarrow2x=\frac{3}{11}+\frac{2}{5}\)
\(\Rightarrow2x=\frac{37}{55}\)
\(\Rightarrow x=\frac{37}{55}:2\)
\(\Rightarrow x=\frac{37}{110}\)
Vậy \(x=\frac{37}{110}\)
_Chúc bạn học tốt_
a) /x-21/=5 C) chiu thoi
x-21=5 & x-21=-5
x=5+21 x=-5+21
x=26 x=16
b) x = -1 & x =2
Ta có \(\left(x-\frac{1}{2}\right)+\left(x-\frac{1}{6}\right)+\left(x-\frac{1}{12}\right)+...+\left(x-\frac{1}{90}\right)=1\)
\(\Rightarrow\left(x+x+x+...+x\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)=1\)
\(\Rightarrow9x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\right)=1\)
\(\Rightarrow9x-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)=1\)
\(\Rightarrow9x-\left(1-\frac{1}{10}\right)=1\)
\(\Rightarrow9x-\frac{9}{10}=1\)
\(\Rightarrow9x=\frac{19}{10}\)
\(\Rightarrow x=\frac{19}{10}\)