K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

          \(a\left(b+1\right)+2b=3\)

 \(\Leftrightarrow\)\(a\left(b+1\right)+2\left(b+1\right)=5\)

\(\Leftrightarrow\)\(\left(a+2\right)\left(b+1\right)=5\)

\(\Rightarrow\)\(a+2\)và  \(b+1\)\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

đến đây bn lập bảng rồi tính a và b nhé

a: a,b là các số tự nhiên

=>a+1>=1 và b+5>=5

(a+1)(b+5)=20

mà a+1>=1 và b+5>=5

nên (a+1;b+5) thuộc {(4;5); (2;10); (1;20)}

=>(a,b) thuộc {(3;0); (1;5); (0;15)}

b: a,b là các số tự nhiên

=>2a+3>=3 và b+1>=1

(2a+3)(b+1)=5

mà 2a+3>=3 và b+1>=1

nên (2a+3;b+1)=(5;1)

=>(a,b)=(1;0)

c:

2a+3=b(a+1)

=>2a+2-b(a+1)=-1

=>(a+1)(2-b)=-1

=>(a+1)(b-2)=1

a;b là các số tự nhiên nên a+1>=1 và b-2>=-2

(a+1)(b-2)=1

mà a+1>=1 và b-2>=-2

nên (a+1;b-2)=(1;-1)

=>(a,b)=(3;1)

17 tháng 8 2023

a: (a,b) thuộc {(3;0); (1;5); (0;15)}

b: (a,b)=(1;0)

c: (a,b)=(3;1)

26 tháng 10 2023

Vì số tự nhiên cần tìm có đúng 4 ước là

1; a; b; n và n + 1 = 4.( a + b)

Nên n là ước lớn nhất vì vậy n là chính số cần tìm

Vì số ước số của n là 4 và a; b là 2 ước của n nên n = a.b ( a; b \(\in\) P)

Theo bài ra ta có: a.b  + 1 = 4.(a + b) ⇒  a.b + 1 = 4.a + 4.b

⇒ a.b - 4a = 4b - 1 ⇒ a.(b - 4) = 4b - 1 ⇒ a = \(\dfrac{4b-1}{b-4}\) ⇒ a = 4 + \(\dfrac{15}{b-4}\)

Vì a \(\in\) P nên b - 4  \(\in\) Ư(15)

Lập bảng ta có: 

b - 4 -15 -5 -3 -1 1 3 5 15
b -11 (loại)

-1(loại) 

1 3 5 7 9 loại 19
a = 4 + \(\dfrac{15}{b-4}\)     -1 loại -11 loại 19 9 loại   5

Theo bảng trên ta có a = 5; b = 19 \(\Rightarrow\) n = 5.19 = 95

Vậy các số tự nhiên thỏa mãn đề bài là 95.

 Ghi chú thử lại ta có: 95 = 5.19

Ư(95) = 1; 5; 19; 95 (đúng 4 ước ok)

95 + 1 = 96 = 4.( 5 + 19) (ok)

 

 

 

                         

                   

 

2 tháng 12 2021

WCLN= ƯCLN  nha các bn.Mình viết nhầm

DD
27 tháng 5 2021

\(\left(3^a-1\right)\left(3^a-2\right)\left(3^a-3\right)\left(3^a-4\right)=\left(2018^b+358799\right)\)

Với \(a=0\)dễ thấy không thỏa. 

Với \(a>0\)có VT là tích của bốn số tự nhiên liên tiếp nên chia hết cho \(4\).

VP nếu \(b>0\)thì VP là số lẻ nên không chia hết cho \(4\)nên \(b=0\).

Suy ra \(\left(3^a-1\right)\left(3^a-2\right)\left(3^a-3\right)\left(3^a-4\right)=358800\)

Có \(358800=23.24.25.26\)suy ra \(3^a-1=26\Leftrightarrow a=3\).

Vậy phương trình có nghiệm nguyên duy nhất là \(\left(a,b\right)=\left(3,0\right)\).