\(^{2^3+3.\left(\frac{1}{2^{ }}\right)^0-1+\text{[}\left(-2\right)^2:\frac{1}{2}\text{]}-8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{81}{16}\)
b) \(\frac{-31}{8}\)
c) \(\frac{2417}{2401}\)
Bn làm đầy đủ ra giúp mik với !! Thầy mik bắt làm đầy đủ cơ !!!
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
\(4\cdot\left(\frac{1}{4}\right)^2+25\cdot\left[\left(\frac{3}{4}\right)^3\div\left(\frac{5}{4}\right)^3\right]\div\left(\frac{3}{2}\right)^3\)
\(=4\cdot\frac{1}{16}+25\cdot\left[\left(\frac{3}{4}\div\frac{5}{4}\right)^3\right]\div\left(\frac{3}{2}\right)^3\)
\(=\frac{1}{4}+25\cdot\left(\frac{3}{5}\right)^3\div\left(\frac{3}{2}\right)^3\)
\(=\frac{1}{4}+25\cdot\left(\frac{2}{5}\right)^3\)
\(=\frac{1}{4}+25\cdot\frac{8}{125}\)
\(=\frac{1}{4}\cdot\frac{8}{5}\)
\(=\frac{2}{5}\)
\(4.\left(\frac{1}{4}\right)^2+25.\left[\left(\frac{3}{4}\right)^3:\left(\frac{5}{4}\right)^3\right]:\left(\frac{3}{2}\right)^3\)
\(=4.\frac{1}{16}+25\left[\left(\frac{3}{4}:\frac{5}{4}\right)^3:\right]:\left(\frac{3}{2}\right)^3\)
\(=\frac{1}{4}+25.\left(\frac{3}{5}\right)^3:\left(\frac{3}{2}\right)^3\)
\(=\frac{1}{4}+25.\left(\frac{2}{5}\right)^3\)
\(=\frac{1}{4}+25.\frac{8}{125}\)
\(=\frac{1}{4}+\frac{8}{5}\)
\(=\frac{2}{5}\)
Câu 2)
Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)
Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)
Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)
Câu 3:
\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)
Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)
\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)
Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)
\(2^3+3\cdot\left(\frac{1}{2}\right)^0-1+\left[\left(-2\right)^2:\frac{1}{2}\right]-8\)
\(=8+3\cdot1-1+\left[4:\frac{1}{2}\right]-8\)
\(=8+3-1+\left[4\cdot\frac{2}{1}\right]-8\)
\(=8+3-1+8-8\)
\(=11-1+0\)
\(=10\)
mọi ng giup mk đi