Tính tổng :
\(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{4950}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
21)
\(\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right).....\left(1+\dfrac{1}{9999}\right)\\ =\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{10000}{9999}\\ =\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{100.100}{99.101}\\ =\dfrac{2.3.4.....100}{1.2.3.....99}.\dfrac{2.3.4.....100}{3.4.5.....101}\\ =100.\dfrac{2}{101}\\ =\dfrac{200}{101}\)
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{4950}\)
\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{9900}\)
\(=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{99.100}\)
\(=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)\(=2\left(\frac{1}{4}-\frac{1}{100}\right)\)
\(=2.\frac{6}{25}\)
\(=\frac{12}{25}\)
Ta có:
\(\frac{A}{2}=\frac{3^3}{2}-\frac{5^3}{6}+\frac{7^3}{12}-\frac{9^3}{20}+\frac{11^3}{30}-\frac{13^3}{42}+\frac{15^3}{56}-\frac{17^3}{72}+...+\frac{199^3}{9900}\)
\(=3^2.\left(1+\frac{1}{2}\right)-5^2.\left(\frac{1}{2}+\frac{1}{3}\right)+7^2.\left(\frac{1}{3}+\frac{1}{4}\right)-9^2.\left(\frac{1}{4}+\frac{1}{5}\right)+...+199^2.\left(\frac{1}{99}+\frac{1}{100}\right)\)
\(=3^2+\left(\frac{3^2}{2}-\frac{5^2}{2}\right)-\left(\frac{5^2}{3}-\frac{7^2}{3}\right)+\left(\frac{7^2}{4}-\frac{9^2}{4}\right)-\left(\frac{9^2}{5}-\frac{11^2}{5}\right)+...+\left(\frac{197^2}{99}-\frac{199^2}{99}\right)+\frac{199^2}{100}\)
\(=3^2-8+8-8+...+8+\frac{199^2}{100}=3^2+\frac{199^2}{100}< 3^2+\frac{199.200}{100}=9+398=407\)
\(\Rightarrow A< 407.2=814\)
Ta co:
\(\frac{1}{2}A=\frac{1}{4}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{72}+\frac{1}{90}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}+\frac{1}{9.10}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{1}{4}+\frac{1}{2}-\frac{1}{10}=\frac{13}{20}\Rightarrow A=\frac{13}{10}.\)
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{36}+\frac{1}{45}\)
\(A=\frac{2}{4}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{72}+\frac{2}{90}\)
\(A=\frac{2}{2.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{8.9}+\frac{2}{9.10}\)
\(A=2\left(\frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(A=2.\frac{2}{5}\)
\(A=\frac{4}{5}\)
~ Học tốt ~ K cho mk nhé! Thank you.
ta gọi biểu thức trên là B có
2B=2.(\(\frac{1}{6}\)+\(\frac{1}{10}\)+\(\frac{1}{15}\)+....+\(\frac{1}{4950}\))
2B=\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+......+\frac{1}{9900}\)
2B=\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.......+\frac{1}{99.100}\)
2B=\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)+.....+\(\frac{1}{99}-\frac{1}{100}\)
2B=\(\frac{1}{3}-\frac{1}{100}\)
2B=\(\frac{100-3}{300}\)
B=\(\frac{97}{300}\): 2
B=\(\frac{97}{300}.\frac{1}{2}\)
B=\(\frac{97}{600}\)
Ta gọi biểu thức là A
A=1/6 + 1/10 + 1/15 + .... + 1/4950
A=6/12+6/20+6/30+...+6/9900
A=6.(1/3.4 + 1/4.5 + 1/5.6 +.... + 1/99.100 )
A=6.(1/3 - 1/4 +1/4-1/5+1/5-1/6+....+1/99-1/100)
A=6.(1/3-1/100)
A=6.97/300
A=97/50