Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow A=\frac{14}{15}.\frac{20}{21}.\frac{41}{42}.....\frac{209}{210}\)
\(=\frac{4.7}{5.6}.\frac{5.8}{6.7}.\frac{6.9}{7.8}.....\frac{19.22}{20.21}\)
\(=\frac{22}{6}=\frac{11}{3}\)
a: \(A=\left(\dfrac{15}{34}+\dfrac{9}{34}-1-\dfrac{15}{17}\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)
\(=\left(\dfrac{12}{17}-1-\dfrac{15}{17}\right)+1\)
\(=\dfrac{-20}{17}+1=\dfrac{-3}{17}\)
b: \(B=\dfrac{-5}{3}\cdot16\dfrac{2}{7}-\dfrac{-5}{3}\cdot28\dfrac{2}{7}\)
\(=\dfrac{-5}{3}\left(16+\dfrac{2}{7}-28-\dfrac{2}{7}\right)=\dfrac{-5}{3}\cdot\left(-12\right)=20\)
c: \(C=25\cdot\dfrac{-1}{27}+\dfrac{1}{5}-2\cdot\dfrac{1}{4}-\dfrac{1}{2}\)
\(=\dfrac{-25}{27}+\dfrac{1}{5}-1\)
\(=\dfrac{-125+27-135}{135}=\dfrac{-233}{135}\)
ta gọi biểu thức trên là B có
2B=2.(\(\frac{1}{6}\)+\(\frac{1}{10}\)+\(\frac{1}{15}\)+....+\(\frac{1}{4950}\))
2B=\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+......+\frac{1}{9900}\)
2B=\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.......+\frac{1}{99.100}\)
2B=\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)+.....+\(\frac{1}{99}-\frac{1}{100}\)
2B=\(\frac{1}{3}-\frac{1}{100}\)
2B=\(\frac{100-3}{300}\)
B=\(\frac{97}{300}\): 2
B=\(\frac{97}{300}.\frac{1}{2}\)
B=\(\frac{97}{600}\)
Ta có:
\(\frac{A}{2}=\frac{3^3}{2}-\frac{5^3}{6}+\frac{7^3}{12}-\frac{9^3}{20}+\frac{11^3}{30}-\frac{13^3}{42}+\frac{15^3}{56}-\frac{17^3}{72}+...+\frac{199^3}{9900}\)
\(=3^2.\left(1+\frac{1}{2}\right)-5^2.\left(\frac{1}{2}+\frac{1}{3}\right)+7^2.\left(\frac{1}{3}+\frac{1}{4}\right)-9^2.\left(\frac{1}{4}+\frac{1}{5}\right)+...+199^2.\left(\frac{1}{99}+\frac{1}{100}\right)\)
\(=3^2+\left(\frac{3^2}{2}-\frac{5^2}{2}\right)-\left(\frac{5^2}{3}-\frac{7^2}{3}\right)+\left(\frac{7^2}{4}-\frac{9^2}{4}\right)-\left(\frac{9^2}{5}-\frac{11^2}{5}\right)+...+\left(\frac{197^2}{99}-\frac{199^2}{99}\right)+\frac{199^2}{100}\)
\(=3^2-8+8-8+...+8+\frac{199^2}{100}=3^2+\frac{199^2}{100}< 3^2+\frac{199.200}{100}=9+398=407\)
\(\Rightarrow A< 407.2=814\)
\(\Rightarrow A=\frac{\frac{1}{2}-\frac{1}{5}+\frac{1}{7}}{\frac{3}{8}-\frac{3}{5}+\frac{3}{7}}+\frac{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}{\frac{3}{4}+\frac{1}{2}+\frac{3}{10}}\)
\(\Rightarrow A=\frac{\frac{1}{2}-\frac{1}{5}+\frac{1}{7}}{3.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{7}\right)}+\frac{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}{\frac{3}{2}.\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}\right)}\)
\(\Rightarrow A=\frac{1}{3}+\frac{2}{3}\)
\(\Rightarrow A=1\)
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{4950}\)
\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{9900}\)
\(=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{99.100}\)
\(=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)\(=2\left(\frac{1}{4}-\frac{1}{100}\right)\)
\(=2.\frac{6}{25}\)
\(=\frac{12}{25}\)