Cho tam giác ABC nhọn, trực tâm H. CMR:
a. \(AB+AC>HA+HB+HC\)
b.\(AB+AC+BC>\frac{3}{2}\times\left(HA+HB+HC\right)\)
Giúp mik nha mọi người. mik cần rất gấp. Cảm ơn các bn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: HA = 2RcosA HB = 2RcosB HC = 2RcosC AB = 2RsinC AC = 2RsinB Vậy ta cần chứng minh: 2RcosA + 2RcosB + 2RcosC < 2RsinC + 2RsinB Chia cả 2 vế cho 2R, ta có: cosA + cosB + cosC < sinC + sinB Áp dụng bất đẳng thức tam giác, ta có: sinC + sinB > sin(A + B) = sinCOSA + cosCSINA = cosA + cosB Vậy ta có: cosA + cosB + cosC < sinC + sinB Do đó, ta có HA + HB + HC < AB + AC. b) Ta có: AB + BC + CA = 2R(sinA + sinB + sinC) = 2R(sinA + sinB + sin(A + B)) = 2R(2sin(A + B/2)cos(A - B/2) + sin(A + B)) = 4Rsin(A + B/2)cos(A - B/2) + 2Rsin(A + B) Vậy ta cần chứng minh: 2RcosA + 2RcosB + 2RcosC < 2332 (4Rsin(A + B/2)cos(A - B/2) + 2Rsin(A + B)) Chia cả 2 vế cho 2R, ta có: cosA + cosB + cosC < 1166(2sin(A + B/2)cos(A - B/2) + sin(A + B)) Áp dụng bất đẳng thức tam giác, ta có: sin(A + B) > sinC = sin(A + B/2 + B/2) = sin(A + B/2)cos(B/2) + cos(A + B/2)sin(B/2) Vậy ta có: 2sin(A + B/2)cos(A - B/2) + sin(A + B) < 2sin(A + B/2)cos(A - B/2) + sin(A + B/2)cos(B/2) + cos(A + B/2)sin(B/2) = sin(A + B/2)(2cos(A - B/2) + cos(B/2)) + cos(A + B/2)sin(B/2) = sin(A + B/2)(2cos(A - B/2) + cos(B/2)) + sin(B/2)cos(A + B/2) = sin(A + B/2)(2cos(A - B/2) + cos(B/2) + cos(A + B/2)) Vậy ta có: cosA + cosB + cosC < 1166(2sin(A + B/2)cos(A - B/2) + sin(A + B)) < 1166(sin(A + B/2)(2cos(A - B/2) + cos(B/2) + cos(A + B/2))) Do đó, ta có HA + HB + HC < 2332(AB + BC + CA).
Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Kẻ HD//AB,HE//ACHD//AB,HE//AC
\(\Rightarrow\)AD=HE;AE=AH
Theo BĐT trong tam giác :
AH<AE+HE=AE+ADAH<AE+HE=AE+AD
ΔHDC vuông tại H :HC<DC
ΔBHE vuông tại H : HB<BE
\(\Rightarrow\)HA+HB+HC<AE+AD+BE+DC=AB+AC
Chứng minh tương tự ta được:
HA+HB+HC<AB+BCHA+HB+HC<AB+BC
HA+HB+HC<AC+BCHA+HB+HC<AC+BC
\(\Rightarrow\) 3(HA+HB+HC)<2(AB+AC+BC)
\(\Rightarrow\)HA + HB + HC < \(\frac{2}{3}\)(AB+AC+BC)(ĐPCM)
-> HA+HB+HC<23(AB+AC+BC)
Kẻ HD//AB ,HE//AC
−>AD=HE; AE=AH
Theo BĐT trong tam giác :
AH<AE+HE=AE+AD
xét ΔHDC vuông tại H :HC<DC
ΔBHE vuông tại H : HB<BE
−>HA+HB+HC<AE+AD+BE+DC=AB+AC
chứng minh tương tự:
HA+HB+HC<AB+BC
HA+HB+HC<AC+BC
K/h có :
3 (HA+HB+HC) < 2 (AB+AC+BC)
-> HA+ HB + HC< \(\frac{2}{3}\)(AB+AC+BC)
a) Kẻ HD//AB, HE//AC
−>AD=HE;AE=AH
Theo BĐT trong tam giác :
AH < AE+HE = AE+AD
xét ΔHDC vuông tại H :HC<DC
ΔBHE vuông tại H : HB<BE
−> HA+HB+HC < AE+AD+BE+DC = AB+AC
chứng minh tương tự:
HA+HB+HC<AB+BC
HA+HB+HC<AC+BC
-> có : 3(HA+HB+HC)<2(AB+AC+BC)
-> ( HA + HB + HC ) x \(\frac{3}{2}\) < AB + AC + BC
bây giờ mik làm có muộn lắm ko bạn???