cho \(0\le a,b,c,d\le1\) Tìm GTLN của: \(P=\frac{a}{bcd+1}+\frac{b}{acd+1}+\frac{c}{abd+1}+\frac{d}{abc+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(0\le a,b,c,d\le1\Rightarrow abc+1\ge abcd+1\)
\(\Rightarrow VT\le\frac{a+b+c+c}{abcd+1}\)
Do \(\hept{\begin{cases}\left(1-a\right)\left(1-b\right)\ge0\\\left(1-c\right)\left(1-d\right)\ge0\\\left(1-ab\right)\left(1-cd\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b\le1+ab\\c+d\le1+cd\\ab+cd\le1+abcd\end{cases}}\)
\(\Rightarrow a+b+c+d\le2+ab+cd\le2+1+abcd=3+abcd\)
Vậy \(VT\le\frac{3+abcd}{1+abcd}\le\frac{3\left(1+abcd\right)}{1+abcd}=3\)
Dấu "=" xảy ra khi a=0,b=c=d=1
Đặt A là vế trái của BĐT cần chứng minh và ký hiệu m là số bé nhất trong bốn số có ở mẫu của A.Như vậy \(m\ge abcd+1\)và
\(A\le\frac{a}{m}+\frac{b}{m}+\frac{c}{m}+\frac{d}{m}=\frac{a+b+c+d}{m}\le\frac{a+b+c+d}{1+abcd}\)
Vì \(a,b,c,d\in\left[0,1\right]\)nên
\(a+b\le1+ab;c+d\le1+cd;ab+cd\le1+abcd\)
\(\Rightarrow a+b+c+d\le3+abcd\)
vì thế \(A\le\frac{3+abcd}{1+abcd}\le3\)
Vậy Max là 3
có ai có cách giải dễ hiểu hơn ko? bn trên lm như vậy cx đc r nhưng trình bày chưa đc!