K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

\(A=3x^2-x+2\)

\(A=3.\left[x^2-2.\frac{1}{6}x+\left(\frac{1}{6}\right)^2\right]+\frac{71}{36}\)

\(A=3.\left(x-\frac{1}{6}\right)^2+\frac{71}{36}\)

Ta có: \(3.\left(x-\frac{1}{6}\right)^2\ge0\forall x\)

\(\Rightarrow3.\left(x-\frac{1}{6}\right)^2+\frac{71}{36}\ge\frac{71}{36}\forall x\)

\(A=\frac{71}{36}\Leftrightarrow3.\left(x-\frac{1}{6}\right)^2=0\Leftrightarrow x=\frac{1}{6}\)

Vậy \(A_{min}=\frac{71}{36}\Leftrightarrow x=\frac{1}{6}\)

Tham khảo ~

12 tháng 7 2018

\(A=3x^2-x+2=3\left(x^2-\frac{1}{3}x+\frac{1}{36}\right)+\frac{23}{12}=3\left(x-\frac{1}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)

Dấu "=" xảy ra khi x-1/6=0 => x=1/6

Vậy Amin = 23/12 khi x=1/6

NV
11 tháng 12 2021

\(A=2\left(x^2-2xy+y^2\right)+\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{8067}{4}\)

\(A=2\left(x-y\right)^2+\left(x-\dfrac{3}{4}\right)^2+\dfrac{8067}{4}\ge\dfrac{8067}{4}\)

\(A_{min}=\dfrac{8067}{4}\) khi \(x=y=\dfrac{3}{2}\)

16 tháng 10 2021

\(A=3x^2+6x+15=3\left(x^2+2x+1\right)+12\)

\(=3\left(x+1\right)^2+12\ge12\)

\(minA=12\Leftrightarrow x=-1\)

16 tháng 10 2021

cảm ơn nhiều ạ

a: Ta có: \(A=-x^2+2x+5\)

\(=-\left(x^2-2x-5\right)\)

\(=-\left(x^2-2x+1-6\right)\)

\(=-\left(x-1\right)^2+6\le6\forall x\)

Dấu '=' xảy ra khi x=1

b: Ta có: \(B=-x^2-8x+10\)

\(=-\left(x^2+8x-10\right)\)

\(=-\left(x^2+8x+16-26\right)\)

\(=-\left(x+4\right)^2+26\le26\forall x\)

Dấu '=' xảy ra khi x=-4

c: Ta có: \(C=-3x^2+12x+8\)

\(=-3\left(x^2-4x-\dfrac{8}{3}\right)\)

\(=-3\left(x^2-4x+4-\dfrac{20}{3}\right)\)

\(=-3\left(x-2\right)^2+20\le20\forall x\)

Dấu '=' xảy ra khi x=2

d: Ta có: \(D=-5x^2+9x-3\)

\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{3}{5}\right)\)

\(=-5\left(x^2-2\cdot x\cdot\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{21}{100}\right)\)

\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{21}{20}\le\dfrac{21}{20}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{9}{10}\)

e: Ta có: \(E=\left(4-x\right)\left(x+6\right)\)

\(=4x+24-x^2-6x\)

\(=-x^2-2x+24\)

\(=-\left(x^2+2x-24\right)\)

\(=-\left(x^2+2x+1-25\right)\)

\(=-\left(x+1\right)^2+25\le25\forall x\)

Dấu '=' xảy ra khi x=-1

f: Ta có: \(F=\left(2x+5\right)\left(4-3x\right)\)

\(=8x-6x^2+20-15x\)

\(=-6x^2-7x+20\)

\(=-6\left(x^2+\dfrac{7}{6}x-\dfrac{10}{3}\right)\)

\(=-6\left(x^2+2\cdot x\cdot\dfrac{7}{12}+\dfrac{49}{144}-\dfrac{529}{144}\right)\)

\(=-6\left(x+\dfrac{7}{12}\right)^2+\dfrac{529}{24}\le\dfrac{529}{24}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{7}{12}\)

30 tháng 11 2017

Ta có: 

\(2A=2x^2+2y^2-2x-2y-2xy\)

\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2-2\ge-2\)

\(\Rightarrow A\ge-1\)

30 tháng 11 2017

Ta nhân 2 thì ta có 2x^2+2y^2-2x-2y-2xy                                                                                                                                                              ghep (x2-2xy+y2);(x2-2x+1);(y2-2y+1)vậy min=-1

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

20 tháng 3 2022

\(A=-3x^2-5\left|y-1\right|+3\le3\)

Dấu ''='' xảy ra khi x = 0 ; y = 1

20 tháng 3 2022

THAM KHẢO:

A= −3x2−5|y−1|+3 ≤ 3

Dấu ''='' xảy ra khi x = 0 ; y = 1

a: \(=\dfrac{1}{9}xy\cdot\left(-27\right)x^6y^3=-3x^7y^4\)

b: \(A=\dfrac{1}{3}x^2y-xy^2+\dfrac{2}{3}x^2y+\dfrac{1}{2}xy+xy^2+1\)

=x^2y+1/2xy+1

Khi x=1 và y=-1 thì A=-1-1/2+1=-1/2