K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

Các bn lm chi tiết giúp mk nha.......

12 tháng 7 2018

Bài 1:

a) \(\sqrt{1-x^2}\)có nghĩa   \(\Leftrightarrow\)\(1-x^2\ge0\)

                                              \(\Leftrightarrow\)\(x^2\le1\)

                                              \(\Leftrightarrow\)\(\left|x\right|\le1\)

b)  \(\sqrt{\frac{x-2}{x-3}}\)có nghĩa   \(\Leftrightarrow\)\(\frac{x-2}{x-3}\ge0\)

                                              \(\Leftrightarrow\)\(\orbr{\begin{cases}x>3\\x\le2\end{cases}}\)

16 tháng 8 2023

1) 

a) \(\sqrt{2x-4}\) có nghĩa khi:

\(2x-4\ge0\)

\(\Leftrightarrow2x\ge4\)

\(\Leftrightarrow x\ge\dfrac{4}{2}\)

\(\Leftrightarrow x\ge2\)

b) \(\sqrt{\dfrac{-7}{4-x}}\) có nghĩa khi 

\(\dfrac{-7}{4-x}\ge0\) mà \(-7< 0\)

\(\Rightarrow4-x\le0\)

\(\Leftrightarrow x\ge4\)

16 tháng 8 2023

bạn ơi còn ý 2 nx mà

21 tháng 12 2023

Bài 3:
a) \(\sqrt{3x-2}=4\)
\(\sqrt{3x-2}=\sqrt{4^2}\)
\(3x-2=4^2=16\)
    \(3x=16+2=18\)
    \(x=18:3=6\)
    Vậy \(x=6\)
b)\(\sqrt{4x^2+4x+1}-11=5\)
\(\sqrt{\left(2x\right)^2+2\left(2x\right)\cdot1+1^2}-11=5\)
\(\sqrt{\left(2x+1\right)^2}-11=5\)
TH1:
\(\left(2x+1\right)-11=5\)
    \(2x+1=5+11=16\)
    \(2x=16-1=15\)
    \(x=15:2=7,5\)
TH2:
\(\left(2x+1\right)-11=-5\)
    \(2x-1=-5+11=6\)
    \(2x=6+1=7\)
    \(x=7:2=3,5\)
    Vậy \(x=\left\{7,5;3,5\right\}\) 
    (Câu này mình không chắc chắn lắm)   
    (Học sinh lớp 6 đang làm bài này)    

21 tháng 12 2023

Bài 4:

a: \(C=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+x+\sqrt{x}}{\sqrt{x}}=\dfrac{2x}{\sqrt{x}}=2\sqrt{x}\)

b: C-6<0

=>C<6

=>\(2\sqrt{x}< 6\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< x< 9\\x\ne1\end{matrix}\right.\)

a: \(P=\dfrac{\left[\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-4+2\left(\sqrt{x}+1\right)\right]}{x+4\sqrt{x}+4}\)

\(=\dfrac{x+\sqrt{x}-2\sqrt{x}-4+2\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2}\)

\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}+2\right)^2}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

c: Để |P|>P thì P<0

\(\Leftrightarrow\sqrt{x}-1< 0\)

hay 0<x<1

8 tháng 8 2018

Bài 1:

a, (Xin được sửa đề bài) \(C=\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}\)

\(=\sqrt{x-3-2\sqrt{x-3}+1}-\sqrt{x-3-4\sqrt{x-3}+4}\)

\(=\sqrt{\left(\sqrt{x-3}-1\right)^2}-\sqrt{\left(\sqrt{x-3}-2\right)^2}\)

\(=\sqrt{x-3}-1-\sqrt{x-3}+2=1\)

b, \(D=\sqrt{m^2}-\sqrt{m^2-10m+25}\)

\(=m-\sqrt{\left(m-5\right)^2}\)

\(=m-m+5=5\)

Bài 2:

a, \(VT=\sqrt{x+2\sqrt{x-2}-1}.\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\sqrt{x-2+2\sqrt{x-2}+1}.\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\sqrt{\left(\sqrt{x-2}+1\right)^2}.\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\left(\sqrt{x-2}-1\right)\left(\sqrt{x-2}+1\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\left(x-3\right):\left(\sqrt{x}-\sqrt{3}\right)\)

\(=\sqrt{x}+\sqrt{3}=VP\)

b, \(VT=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a+1-2\sqrt{a}}\)

\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\left(\frac{\sqrt{a}-1+\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)^2}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{\sqrt{a}-1}{\sqrt{a}}=VP\)

21 tháng 7 2021

a) Biểu thức có nghĩa \(\Leftrightarrow-x^5\ge0\)

\(\Leftrightarrow x^5\le0\) \(\Leftrightarrow x\le0\)

Vậy với \(x\le0\) thì biểu thức \(\sqrt{-x^5}\) có nghĩa

b) Biểu thức có nghĩa \(\Leftrightarrow-\left|x-2\right|\ge0\)

\(\Leftrightarrow\left|x-2\right|\le0\)  (1)

Vì \(\left|x-2\right|\ge0\) \(\forall x\)  (2)

Từ (1) và (2) \(\Rightarrow\left|x-2\right|=0\) \(\Leftrightarrow x-2=0\) \(\Leftrightarrow x=2\)

Vậy với \(x=2\) thì biểu thức \(\sqrt{-\left|x-2\right|}\) có nghĩa

c) \(ĐKXĐ:x\ne3\)

 Biểu thức có nghĩa \(\Leftrightarrow\dfrac{10}{\left(x-3\right)^2}\ge0\)

\(\Leftrightarrow\dfrac{10}{\left(x-3\right)^2}>0\) \(\Leftrightarrow\left(x-3\right)^2>0\) ( do \(10>0\) )

Vì \(\left(x-3\right)^2\ge0\) \(\forall x\)

\(\Rightarrow\) Để \(\left(x-3\right)^2>0\) thì \(x-3\ne0\) \(\Leftrightarrow x\ne3\)

So sánh với ĐKXĐ ta thấy \(x\ne3\) thỏa mãn

Vậy với \(x\ne3\) thì biểu thức \(\sqrt{\dfrac{10}{\left(x-3\right)^2}}\) có nghĩa 

21 tháng 7 2021

mọi người giúp em với em cảm ơn ạ

 

6 tháng 10 2021

1) a) x<=11/2

b) x>=2

c) x#0

d) x>7

 

6 tháng 10 2021

\(1,\\ a,ĐK:11-2x\ge0\Leftrightarrow x\le\dfrac{11}{2}\\ b,ĐK:9x-18\ge0\Leftrightarrow x\ge2\\ c,ĐK:x\ne0;\dfrac{3}{x^2}\ge0\left(luôn.đúng.do.3>0;x^2>0\right)\Leftrightarrow x\in R\backslash\left\{0\right\}\\ d,ĐK:\dfrac{5}{x-7}\ge0\Leftrightarrow x-7>0\left(5>0;x-7\ne0\right)\Leftrightarrow x>7\\ 2,\\ a,=\left|4x\right|-2x^2=4x-2x^2\\ b,bạn.thiếu.điều.kiện.nhé\\ c,=\left|x-5\right|-4x=5-x-4x=5-5x\)

1:

a: ĐKXĐ: 1-x>=0

=>x<=1

b: ĐKXĐ: 2/x>=0

=>x>0

c: ĐKXĐ: 4/x+1>=0

=>x+1>0

=>x>-1

d: ĐKXĐ: x^2+2>=0

=>x thuộc R

Câu 2:

a: \(=\left|-\sqrt{2-1}\right|=\sqrt{1}=1\)

b: \(=\left|4+\sqrt{2}\right|=4+\sqrt{2}\)