CMR a+ \(\frac{1}{b\left(a-b\right)^2}\)> \(2\sqrt{2}\forall a>b>0\)
ai làm đúng tick nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Theo đề bài: \(VT=\left(a-1\right)+\frac{1}{\left(a-1\right)}+1\ge2\sqrt{\left(a-1\right).\frac{1}{a-1}}+1=2+1=3^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi \(\left(a-1\right)=\frac{1}{a-1}\Leftrightarrow a=2\)
Bài 2: \(BĐT\Leftrightarrow\left(a^2+2\right)^2\ge4\left(a^2+1\right)\)
\(\Leftrightarrow a^4+4a^2+4\ge4a^2+4\)
\(\Leftrightarrow a^4\ge0\) (đúng). Đẳng thức xảy ra khi a = 0
Bài 3: Hình như sai đề thì phải ạ. Nếu a = 1,5 ; b = 1 thì \(\frac{19}{10}=1,9< 3\)
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
\(VT=\frac{\left(\sqrt[3]{abc}\right)^2}{2abc}+\Sigma\frac{a^2}{a^2\left(b+c\right)}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\Sigma a^2\left(b+c\right)+2abc}=\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Côsi:
\(VT=\left(a-b\right)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{\left(a-b\right)\left(b+1\right)^2}-1\)
\(\ge4\sqrt[4]{\left(a-b\right).\frac{b+1}{2}.\frac{b+1}{2}.\frac{4}{\left(a-b\right)\left(b+1\right)^2}}-1=3\)
Ở đây ko yêu cầu chỉ ra dấu bằng nên ta ko cần làm điều đó.
Do \(a,b,c>0\)suy ra \(\hept{\begin{cases}a+b< a+b+c\\b+c< a+b+c\\c+a< a+b+c\end{cases}< =>\hept{\begin{cases}\frac{1}{a+b+c}< \frac{1}{a+b}\\\frac{1}{a+b+c}< \frac{1}{b+c}\\\frac{1}{a+b+c}< \frac{1}{c+a}\end{cases}}}\)
Nên \(\frac{a}{a+b+c}< \frac{a}{a+b};\frac{b}{a+b+c}< \frac{b}{b+c};\frac{c}{a+b+c}< \frac{c}{c+a}\)
Cộng theo vế 3 bất đẳng thức trên : \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
\(< =>\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< =>1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)(*)
Ta có : \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng theo vế 3 bất đẳng thức trên : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}\)
\(< =>\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}< =>\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)(**)
Từ (*) và (**) ta được : \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)Hay ta có điều phải chứng minh
Bài của bạn @phuonglenhat123 đúng rồi, tuy nhiên cách trình bày khá dài. Mình sẽ rút ngắn lại. Cách xét vẫn vậy nhé
Do a,b,c>0 nên \(\frac{a}{a+b}< 1\)vì vậy \(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự ta có \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng vế với vế các bất đẳng thức trên ta có \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
\(< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)
hay \(1=\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}=2\)
vậy bất đẳng thức được chứng minh