K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

có : 

5+5^2+5^3+....+5^100 

=(5+5^2 )+(5^3+5^4 )+...+(5^99+5^100 ) 

=5(5+1)+5^3(5+1)+...+5^99(5+1) 

=5.6+...+5^99.6 

=6.(5+53+...+599 ) 

=> chia hết cho 6

=> đcpcm

8 tháng 7 2018

Bài 2: 

2^m + 2^n = 2^(m + n) 
<=> 2^m = 2^(m + n) - 2^n 
<=> 2^m = 2^n(2^m - 1) 
<=> 2^(m - n) = 2^m - 1 (1) 
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2). 
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4). 
(2) và (4) cho ta m = n và phương trình trở thành 
2^(m + 1) = 2^(2m) 
<=> m + 1 = 2m 
<=> m = 1 
Vậy phương trình có nghiệm m = n = 1. 

12 tháng 12 2016

Vì 3^m+5^n chia hết cho 8, 8^n+8^m chia hết cho 8

=>(8^m+8^n) - (3^m+5^n) chia hết cho 8

=>3^n+5^m chia hết cho 8

5 tháng 11 2021

Giả sử m,n đều là số chẵn .

Đặt n = 2a , m = 2b ( a,b thuộc Z+ ; a,b 》1 )

=> 3^m = 3^2b = 9^b đd 1 ( mod 8 ) ; 5^n = 5^2a = 25^a đd 1 ( mod 8 )

=> 3^m + 5^n đd 2 ( mod 8 ) ( trái với giả thiết )

=> Điều giả sử sai

=> m,n không cùng là số chẵn 

Tương tự : Nếu trong 2 số m,n có 1 số chẵn , 1 số lẻ không thỏa mãn giả thiết 

=> Cả m,n đều là số lẻ 

Xét tổng 3^m + 5^n + 3^n + 5^m = ( 3^m + 5^m ) + ( 3^n + 5^n )

= ( 3 + 5 ).( 3^m-1 - 3^m-2.5 + ... + 5^m-1 ) + ( 3 + 5 ).( 3^n-1 - ... + 5^n-1 ) ( Vì m,n đều là số lẻ )

= 8.M + 8.N chia hết cho 8

Mà 3^m + 5^n chia hết cho 8 ( giả thiết )

=> 3^n + 5^m chia hết cho 8 ( đpcm )

Vậy 3^n + 5^m chia hết cho 8 .

AH
Akai Haruma
Giáo viên
16 tháng 12 2016

Lời giải:

Ta có $3^m+5^n\equiv 3^m+1\equiv 0\pmod 4$ nên $3^m\equiv (-1)^m\equiv -1\pmod 4$ nên $m$ lẻ

Đặt $m=2k+1$ ( $k\in\mathbb{N}$) thì $3^m=3^{2k+1}\equiv 3\pmod 8$

$\Rightarrow 5^n\equiv 5\pmod 8$. Xét tính chẵn, lẻ ( đặt $n=2t,2t+1$) suy ra $n$ lẻ

Do đó $\Rightarrow 3^n+5^m\equiv (-5)^n+(-3)^m=-(5^n+3^m)\equiv 0\pmod 8$

Ta có đpcm

10 tháng 3 2016

không biết ai làm dc bài này chắc mình hâm mộ lắm

10 tháng 3 2016

\(3^m+5^n=8.k\) chia hết cho 8.

\(\left(3^m-3^n\right)+\left(5^n+5k\right)=0\)

\(3\left(3^{m-1}-k\right)+5\left(5^{n-1}-k\right)=0\)

\(3^{m-1}-k=0\) \(\Rightarrow3^{m-1}=k\)

\(5^{n-1}-k=0\Rightarrow5^{n-1}=k\)

Tới đây bí òi

21 tháng 11 2016

Giả sử n và m là số chẵn ta có: \(\hept{\begin{cases}n=2k\\m=2p\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3^m=3^{2k}=9^k\\5^n=5^{2p}=25^p\end{cases}}\)

Ta có 9 chia cho 8 dư 1 nên 9k chia 8 dư 1

25 chia 8 dư 1 nên 25p chia 8 dư 1

\(\Rightarrow3^m+5^n\)chia 8 dư 2. Trai giả thuyết

Tương tự với n lẻ m chẵn và n chẵn m lẻ ta đều không thỏa đề bài. Từ đó ta có được là n,m phải là 2 số lẻ

Ta có: 

\(3^m+5^n+3^n+5^m=\left(3^m+5^m\right)+\left(3^n+5^n\right)\)

\(=\left(3+5\right)\left(3^{m-1}-3^{m-2}.5+...\right)+\left(3+5\right)\left(3^{n-1}-3^{n-2}.5+...\right)=8A+8B\)

\(\Rightarrow3^n+5^m=8A+8B-3^m-5^n\)

Ta thấy rằng \(3^m+5^n;8A+8B\)đều chia hết cho 8 nên \(3^n+5^m\)chia hết cho 8

21 tháng 11 2016

chia hết cho 8 nha bạn !

1

Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈N*)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\)                       \(\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\)       \(\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

\(\text{⇒ (6n + 15) – (6n + 14) ⋮ d}\)

\(\text{⇒1 ⋮d}\)

\(\text{⇒d = 1}\)

Do đó: \(\text{ƯCLN(2n + 5; 3n + 7) = 1}\)

Vậy hai số \(\text{2n + 5 và 3n +7 }\)là hai số nguyên tố cùng nhau.

\(M=1+3+3^2+...+3^{100}\)

\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(\Leftrightarrow M=4+3^2+\left(1+3+3^2\right)+3^5+\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)

\(\Leftrightarrow M=4+3^2.13+3^5.13+...+3^{98}.13\)

\(\Leftrightarrow M=4+13\left(3^2+3^5+...+3^{98}\right)\)

mà \(13\left(3^2+3^5+...+3^{98}\right)⋮13\)

\(4:13\left(dư4\right)\)

\(\Leftrightarrow M:13\left(dư4\right)\)