Tính giá trị nhỏ nhất của biểu thức
K=x2+2y2-2xy+2x-6y+8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q = x 2 + 2 y 2 + 2 x y − 2 x − 6 y + 2015 = x 2 + 2 x y + y 2 − 2 x − 2 y + 1 + y 2 − 4 y + 4 + 2010 = x 2 + 2 x y + y 2 − 2 x + 2 y + 1 + y 2 − 4 y + 4 + 2010 = x + y 2 − 2 x + y + 1 + y 2 − 4 y + 4 + 2010 = x + y − 1 2 + y − 2 2 + 2010
\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+y^2-8y+16-17\\ A=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge17\)
Vậy \(A_{min}=17\leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
A.
$a^2+4b^2+9c^2=2ab+6bc+3ac$
$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$
$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$
$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$
$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$
$\Rightarrow a-2b=a-3c=2b-3c=0$
$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$
B.
$x^2+2xy+6x+6y+2y^2+8=0$
$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$
$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$
$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)
$\Rightarrow -1\leq x+y+3\leq 1$
$\Rightarrow -4\leq x+y\leq -2$
$\Rightarrow 2020\leq x+y+2024\leq 2022$
$\Rightarrow A_{\min}=2020; A_{\max}=2022$
A = x 2 + 2 y 2 – 2 x y + 2 x – 10 y ⇔ A = x 2 + y 2 + 1 – 2 x y + 2 x – 2 y + y 2 – 8 y + 16 – 17 ⇔ A = ( x 2 + y 2 + 12 – 2 . x . y + 2 . x . 1 – 2 . y . 1 ) + ( y 2 – 2 . 4 . y + 4 2 ) – 17 ⇔ A = ( x – y + 1 ) 2 + ( y – 4 ) 2 – 17
Vì với mọi x; y nên A ≥ -17 với mọi x; y
=> A = -17
⇔ x − y + 1 = 0 y − 4 = 0 ⇔ x = y − 1 y = 4 ⇔ x = 3 y = 4
Vậy A đạt giá trị nhỏ nhất là A = -17 tại x = 3 y = 4
Đáp án cần chọn là: B
A= x2+2y2-2xy-2x-2y+1015
A = x2 - 2xy - 2x + y2 + 2y + 1 + y2 - 4y + 4 + 1010
A = [x2 - 2x(y + 1) + (y+1)2 ] + (y-2)2 + 1010
A = ( x - y - 1)2 + (y-2)2 + 1010 \(\ge1010\forall x,y\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy MinA = 1010 <=> \(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
A = x 2 + 2 y 2 – 2 x y + 2 x – 10 y ⇔ A = x 2 + y 2 + 1 – 2 x y + 2 x – 2 y + y 2 – 8 y + 16 – 17 ⇔ A = ( x 2 + y 2 + 1 2 – 2 . x . y + 2 . x . 1 – 2 . y . 1 ) + ( y 2 – 2 . 4 . y + 4 2 ) – 17 ⇔ A = ( x – y + 1 ) 2 + ( y – 4 ) 2 – 17
Vì x - y + 1 2 ≥ 0 y - 4 2 ≥ 0 với mọi x, y nên A ≥ -17 với mọi x, y
=> A = -17 ó x - y + 1 = 0 y - 4 = 0 ó x = y - 1 y = 4 ó x = 3 y = 4
Vậy A đạt giá trị nhỏ nhất là A = -17 tại x = 3 y = 4
Đáp án cần chọn là: C
\(A=\left[\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)-17\\ A=\left(x-y+1\right)^2+\left(y-4\right)^2-17\ge-17\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y-1=3\\y=4\end{matrix}\right.\)
Cho các số x khác 2y thỏa mãn x2- 2xy - 2y2 - 3x +6y=0
Tính giá trị biểu thức A= x2+ 2xy _y2 - 2x- 2y
\(A=x^2-2xy+2y^2-4y+5\\=(x^2-2xy+y^2)+(y^2-4y+4)+1\\=(x-y)^2+(y-2)^2+1\)
Ta thấy: \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-y\right)^2+\left(y-2\right)^2\ge0\forall x;y\)
\(\Rightarrow A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\forall x;y\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x-y=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=2\end{matrix}\right.\)
\(\Leftrightarrow x=y=2\)
Vậy \(Min_A=1\) khi \(x=y=2\).
$Toru$
\(K=x^2+2y^2-2xy+2x-6y+8\)
\(K=x^2+2x\left(y-1\right)-2y^2-6y+8\)
\(K=x^2+2x\left(y-1\right)-y^2-2y+1+y^2-4y+4+4\)
\(K=x^2+2x\left(y-1\right)-\left(y-1\right)^2+\left(y-2\right)^2+4\)
\(K=\left(x+y-1\right)^2+\left(y-2\right)^2+4\ge4\forall x;y\)
Dấu "=" xảy ra khi x = -3; y = 4