K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

A B C D M F

Lấy F thuộc AB sao cho AF = AC

Xét tam giác AFM và AMC ta có:

   AM: chung

   AF = AC

   góc AFM = MAC

=> \(_{\Delta AFM=\Delta AMC}\) (c-g-c)

=> MF = MC

Trong tam giác MBF có: MB - MF < BF

Mà MF = MC => MB - MC < BF

Mà BF = AB - AF = AB - AC

Vậy AB - AC > MB - MC (đpcm)

17 tháng 4 2017

diinh a hai canh ben la b va c m la diem nam trong tam giac nha

29 tháng 6 2021

Trên cạnh AB lấy điểm N sao cho AN = AC.

\(\Delta AMC=\Delta AMN\)(c.g.c), suy ra \(AC=AN,MC=MN\)

Áp dụng BĐT tam giác cho \(\Delta BMN\), ta có:

 \(AB-AC=AB-AN=BN>MB-MN=MB-MC\)

4 tháng 4 2016

trong tam giác ABM, ta có bất đẳng thức

MB<AB+AM

trong tam giác ACM, ta co bất đẳng thức

MC<AC+AM

từ 2 điều trên suy ra MB-MC<(AB+AM)-(AC+AM)

suy ra MB-MC<AB+AM-AC-AM

suy ra MB-MC<AB-AC(đfcm)

11 tháng 6 2017

A B C D N 1 2 M

Trên cạnh AB lấy lấy điểm N sao cho AN=AC.

=> \(\Delta\)AMC=\(\Delta\)AMN (c.g.c) => MC=MN (2 cạnh tương ứng)

Ta có: AB-AC=AB-AN=NB (Thay AN=AC)

Xét \(\Delta\)MNB: NB>MB-MN (Bất đẳng thức tam giác) , MN=MC => NB>MB-MC

Mà NB=AB-AC => AB-AC>MB-MC hay MB-MC<AB-AC (đpcm)

10 tháng 3 2018

Hok tốt

21 tháng 2 2022

a) Chứng minh: tam giác ABD = tam giác AMD nhed

a: Xét ΔABD và ΔAMD có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

b: Ta có: ΔABD=ΔAMD

nên \(\widehat{ABD}=\widehat{AMD}\)

c: Xét ΔAID vuông tại I và ΔAKD vuông tại K có

AD chung

\(\widehat{IAD}=\widehat{KAD}\)

Do đó: ΔAID=ΔAKD

Suy ra: AI=AK

=>BI=KM

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AB=CD; AD=BC

b: Xet ΔAMI và ΔCMK có 

\(\widehat{AMI}=\widehat{CMK}\)

MA=MC

\(\widehat{MAI}=\widehat{MCK}\)

Do đó: ΔAMI=ΔCMK

Suy ra: MI=MK

31 tháng 12 2023

a: Xét ΔADB và ΔADC có

AB=AC

AD chung

BD=CD

Do đó: ΔADB=ΔADC

b: Ta có: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

=>AD là phân giác của góc BAC

c: Xét ΔADM vuông tại M và ΔADN vuông tại N có

AD chung

\(\widehat{DAM}=\widehat{DAN}\)

Do đó: ΔADM=ΔADN

=>AM=AN

Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC