tìm x
| 3x+5 | = 11-2x
ai nhanh mà đúng mk tick cho 5 tick nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x-9).(x-7)=0 TH1;3x-9=0 TH2;x-7=0 3x=0+9 x=0+7 3x=9 x=7 x=3 Vậy x có 2 giá trị x=3 và x=7
\(\frac{3x-1}{8}+\frac{3x+18}{11}=\frac{3x}{7}+\frac{3x+20}{13}\)
\(\Rightarrow\frac{1001\left(3x-1\right)}{8008}+\frac{728\left(3x+18\right)}{8008}=\frac{1144.3x}{8008}+\frac{616\left(3x+20\right)}{8008}\)
\(\Rightarrow3003x-1001+2184x+13104x=3432x+1848x+12320\)\
\(\Rightarrow\)\(19111x=13321\Rightarrow x=\frac{13321}{19111}\)
\(\frac{4}{11}.y-\frac{6}{11}=\frac{2}{5}\Leftrightarrow\frac{4}{11}y=\frac{2}{5}+\frac{6}{11}\)
\(\Leftrightarrow\frac{4}{11}y=\frac{52}{55}\Rightarrow y=\frac{52}{55}:\frac{4}{11}\)
\(\Rightarrow y=\frac{13}{5}\)
\(\frac{4}{11}\times y-\frac{6}{11}=\frac{2}{5}\)
\(\Rightarrow\frac{4}{11}\times y=\frac{2}{6}+\frac{6}{11}\)
\(\Rightarrow\frac{4}{11}\times y=\frac{29}{33}\)
\(\Rightarrow y=\frac{29}{33}:\frac{4}{11}\)
\(\Rightarrow y=\frac{29}{33}\times\frac{11}{4}\)
\(\Rightarrow y=\frac{29}{12}\)
a: =11/4+5/4-9/8
=4-9/8=32/8-9/8=23/8
b: \(=\dfrac{6}{7}\cdot\dfrac{7}{4}+\dfrac{5}{3}=\dfrac{3}{2}+\dfrac{5}{3}=\dfrac{9+10}{6}=\dfrac{19}{6}\)
c: \(=\dfrac{13}{18}\cdot\dfrac{9}{5}-1=\dfrac{13}{10}-1=\dfrac{3}{10}\)
d: \(=3+\dfrac{9}{4}\cdot\dfrac{5}{3}=3+\dfrac{45}{12}=\dfrac{81}{12}=\dfrac{27}{4}\)
\(=4\cdot25\left(124+175+1\right)=100\cdot300=30000\)
\(\left|3x+5\right|=11-2x\) \(\text{Đ}K:11-2x\ge0\)
<=>\(3x+5=\pm11-2x\)
TH1: \(3x+5=11-2x\) TH2 : \(3x+5=-\left(11-2x\right)\)
<=>\(3x+2x=11-5\) <=>\(3x+5=-11+2x\)
<=>\(5x=6\) <=>\(3x-2x=-11-5\)
<=> \(x=\frac{6}{5}\) <=> \(x=-16\)
\(V\text{ậy}\orbr{\begin{cases}x=\frac{6}{5}\\x=-16\end{cases}}\)
\(\left|3x+5\right|=11-2x\)
Từ biểu thức trên ta có thể suy ra \(\left|3x+5\right|=\pm11-2x\)( 11 - 2x > 0 )
+TH1:
\(\left|3x+5\right|=11-2x\)
\(\Rightarrow3x+2x=11-5\)
\(\Rightarrow5x=6\)
\(\Rightarrow x=\frac{6}{5}\)
+TH2:
\(\left|3x+5\right|=\left(-11\right)-2x\)
\(\Rightarrow3x-2x=\left(-11\right)-5\)
\(\Rightarrow x=-16\)
Vậy x \(\in\left\{\frac{6}{5};-16\right\}\)