chứng minh đẳng thức:
(x+y+z)(a+b+c)=ax+by+cz với
x=a^2-bc
y=b^2-ac
z=c^2-ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Thực hiện khai triển ta có:
\((x+y+z)(a+b+c)=ax+by+xz+x(b+c)+y(a+c)+z(a+b)\)
\(=ax+by+cz+(a^2-bc)(b+c)+(b^2-ac)(a+c)+(c^2-ab)(a+b)\)
\(=ax+by+cz+(a^2b+a^2c+b^2a+b^2c+c^2a+c^2b)-(b^2c+bc^2+a^2c+ac^2+a^2b+ab^2)\)
\(=ax+by+cz+(a^2b-a^2b)+(ab^2-ab^2)+(b^2c-b^2c)+(bc^2-bc^2)+(ac^2-ac^2)+(a^2c-a^2c)\)
\(=ax+by+cz\)
Ta có đpcm.
Sửa đề:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
Xét hiệu:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)-\left(ax+by+cz\right)^2\)
\(=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz\)
\(=a^2y^2+a^2z^2+b^2z^2+b^2x^2+c^2y^2+c^2x^2-2axby-2bycz-2axcz\)
\(=\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)\)
\(=\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2\ge0\)
=> BĐT luôn đúng
Nó là bđt bunyakovsky luôn rồi mà bạn,lên google sẽ có cách chứng minh
Đặt \(A=\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+cz\left(z-x\right)}\)
Từ ax+by+cz=0
=>(ax+by+cz)2=0
=>a2x2+b2y2+c2z2+2axby+2bycz+2czax=0
=>a2x2+b2y2+c2z2=-2(ax+by+byca+czax)
Xét mẫu thức: \(ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2\)
\(=ab\left(x^2-2xy+y^2\right)+bc\left(y^2-2yz+z^2\right)+ca\left(z^2-2zx+x^2\right)\)
\(=abx^2-2abxy+aby^2+bcy^2-2bcyz+bcz^2+caz^2-2cazx+cax^2\)
\(=\left(abx^2+bcz^2\right)+\left(aby^2+acz^2\right)+\left(acx^2+bcy^2\right)-2\left(abxy+bcyz+cazx\right)\)
\(=\left(aby^2+acz^2\right)+\left(abx^2+bcz^2\right)+\left(acx^2+bcy^2\right)+a^2x^2+b^2y^2+c^2z^2\)
\(=\left(a^2x^2+aby^2+acz^2\right)+\left(abx^2+b^2y^2+bcz^2\right)+\left(acx^2+bcy^2+c^2z^2\right)\)
\(=a\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+c\left(ax^2+by^2+cz^2\right)\)
\(=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)
Do đó: \(A=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{\frac{1}{2018}}=2018\) (dpcm)
\(ax+by+cz=0\Rightarrow\left(ax+by+cz\right)^2=0\)
\(\Rightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(axby+bycz+axcz\right)\)
Ta co
\(\dfrac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(z-x\right)^2+ab\left(x-y\right)^2}\)
\(=\dfrac{ax^2+by^2+cz^2}{bcy^2-2bcyz+bcz^2+acz^2-2aczx+acx^2+abx^2-2abxy+aby^2}\)
\(=\dfrac{ax^2+by^2+cz^2}{bcy^2+bcz^2+acz^2+acx^2+abx^2+aby^2-2\left(axby+bcyz+axcz\right)}\)
\(=\dfrac{ax^2+by^2+cz^2}{bcy^2+bcz^2+acz^2+acx^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2}\)
\(=\dfrac{ax^2+by^2+cz^2}{\left(acx^2+abx^2+a^2x^2\right)+\left(bcy^2+aby^2+b^2y^2\right)+\left(c^2z^2+acz^2+bcz^2\right)}\)
\(=\dfrac{ax^2+by^2+cz^2}{ax^2\left(a+b+c\right)+by^2\left(a+b+c\right)+cz^2\left(a+b+c\right)}\)
\(=\dfrac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\dfrac{1}{a+b+c}\) ( dpcm)