cho x+2000/x-2000=y+2001/y-2001. chứng minh x/y=2000/2001
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
Vì \(1-2y\) luôn là số lẻ nên \(1-2y\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow y=\left\{0;1;-2;3\right\}\)
\(\Rightarrow x\in\left\{40;-40;8;-8\right\}\)
Vậy các cặp số x,y thỏa mãn là \(\left(0;40\right);\left(1;-40\right);\left(-2;8\right);\left(3;-8\right)\)
Ta có :
\(B=\dfrac{2000+2001}{2001+2002}=\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}\)
Mặt khác :
\(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)
\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)
\(\Leftrightarrow A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}=\dfrac{2000+2001}{2001+2002}=B\)
\(\Leftrightarrow A>B\)
Câu 2:
\(\dfrac{x+2000}{x-2000}=\dfrac{y+2001}{y-2001}\)
\(\Leftrightarrow\left(x+2000\right)\left(y-2001\right)=\left(x-2000\right)\left(y+2001\right)\)
\(\Leftrightarrow xy-2001x+2000y-4002000=xy+2001x-2000y-4002000\)
=>-2001x+2000y=2001x-2000y
=>-4002x=-4000y
=>2001x=2000y
hay x/y=2000/2001
Hic... thông cảm đi, đây chưa học bn ạ, chứ giúp đc mk giúp òi
\(\frac{x+2000}{x-2000}=\frac{y+2001}{y-2001}\Rightarrow\left(x+2000\right)\left(y-2001\right)=\left(x-2000\right)\left(y+2001\right)\)
\(\Rightarrow\frac{x+2000}{y+2001}=\frac{x-2000}{y-2001}=\frac{x+2000+x-2000}{y+2001+y-2001}=\frac{2x}{2y}=\frac{x}{y}=\frac{x+2000-\left(x-2000\right)}{y+2001-\left(y-2001\right)}=\frac{2000}{2001}\)
=>đpcm