K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

a)\(f\left(x\right)=x^4+2x^3-x-2\)

\(=x^4+2x^3+x^2-x^2-x-2\)

\(=\left(x^2+x\right)^2-\left(x^2+x\right)-2\)

Đặt \(x^2+x=t\) ta có:

\(=t^2-t-2\)\(=\left(t-2\right)\left(t+1\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+1\right)\)

7 tháng 6 2018

1/ đề sai vd: 2+3=5 là số nguyên tố

2/ \(4x^2-a^2+y^2-16b^2+4xy+8ab\)

\(=\left[\left(2x\right)^2+2.2xy+y^2\right]-\left[a^2+2.4ab-\left(4b\right)^2\right]\)

\(=\left(2x+y\right)^2-\left(a-4b\right)^2\)

\(=\left(2x+y+a-4b\right)\left(2x+y-a+4b\right)\)

3/

\(M=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)

\(=\left(x^2+5x-x-5\right)\left(x^2+4x+5\right)\)

\(=\left(x^2+4x-5\right)\left(x^2+4x+5\right)\)

\(=\left(x^2+4x\right)^2-5^2\)

\(=\left(x^2+4x\right)^2-25\)

Vì \(\left(x^2+4x\right)^2\ge0\)

\(\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)

\(\Rightarrow M\ge-25\)

Dấu "=" xảy ra khi x = 0 hoặc x = -4

Vậy Mmin = -25 khi x = 0 hoặc x = -4