Cho tứ giác ABCD, biết 2 đường thẳng AB và CD cắt nhau tại E, hai đường thẳng BC và AD cắt nhau ở F. Các phân giác của ^E và^F cắt nhau ở I. Chứng minh:
a, ˆEIF=ˆABC+ˆADC/2
b, Nếu ˆBAD=130 độ và ^BCD =50 độ thì IE vuông góc với IF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của FI với BC là M . Góc EMF là góc ngoài đỉnh F của hai tam giác MBF và MIE , ta có :
\(\widehat{EMF}\)\(=\widehat{F_1}\)\(+\widehat{MBF}\)
\(\widehat{EMF}\)\(=\widehat{F_2}\)\(+\widehat{EIF}\)
Suy ra : \(\widehat{EIF}\)\(+\widehat{F_2}\)\(=\widehat{F_1}\)\(+\widehat{MBF}\)\(\left(1\right)\)
Gọi giao điểm của EI với CD là N
Chứng minh tương tự , ta có :
\(\widehat{EIF}\)\(+\widehat{F_2}\)\(=\widehat{NDF}\)\(+\widehat{E_1}\)\(\left(2\right)\)\(...\)