phân tích đa thức thành nhân tử:
\(x^3-2x-4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)
\(=x^4-x^3+3x^3-3x^2+3x^2-3x+9x-9\\ =\left(x-1\right)\left(x^3+3x^2+3x+9\right)\\ =\left(x-1\right)\left(x+3\right)\left(x^2+3\right)\)
\(x^4+2x^3+6x-9=x^3\left(x-1\right)+3x^2\left(x-1\right)+3x\left(x-1\right)+9\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+3x+9\right)\)
\(=\left(x-1\right)\left[x^2\left(x+3\right)+3\left(x+3\right)\right]\)
\(=\left(x-1\right)\left(x+3\right)\left(x^2+3\right)\)
\(x^4+2x^3+10x-25\)
\(=x^4+5x^2+2x^3+10x-5x^2-25\)
\(=\left(x^2+5\right)\left(x^2+2x-5\right)\)
x^4-2x^3+2x-1
=x4-1-2x3+2x
=(x2-1)(x2+1)-2x(x2-1)
=(x2-1)(x2-2x+1)
=(x-1)(x+1)2(x-1)2
a: \(x^4-2x^3+x^2-2x\)
\(=\left(x^4-2x^3\right)+\left(x^2-2x\right)\)
\(=x^3\left(x-2\right)+x\left(x-2\right)\)
\(=x\left(x-2\right)\left(x^2+1\right)\)
b: \(x^4+x^3-8x-8\)
\(=\left(x^4+x^3\right)-\left(8x+8\right)\)
\(=x^3\left(x+1\right)-8\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3-8\right)\)
\(=\left(x+1\right)\left(x-2\right)\left(x^2+2x+4\right)\)
\(a)\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)
Để đơn giản hơn cũng như là dễ nhìn hơn thì ta :
Đặt : \(x^2+2x=a\)
Do đó ta có đa thức :
\(a.\left(a+4\right)+3=a^2+4a+3\)
\(=a^2+a+3a+3\)
\(=a\left(a+1\right)+3\left(a+1\right)\)
\(=\left(a+1\right)\left(a+3\right)\)
\(=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)
\(=\left(x+1\right)^2.\left(x^2+2x+3\right)\)
Hoặc bạn có thể đặt \(x^2+2x+2=t\)
Thì \(P=\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)
\(P=\left(t-2\right)\left(t+2\right)+3\)
\(P=t^2-4+3\)
\(P=t^2-1\)
\(P=\left(t-1\right)\left(t+1\right)\)
\(P=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)
\(P=\left(x+1\right)^2\left(x^2+2x+3\right)\)
\(x^3-2x-4=x^3-4x+2x-4=x\left(x-2\right)\left(x+2\right)+2\left(x-2\right)=\left(x-2\right)\left(x^2+2x+2\right)\)