cho 1/x-1/y+1/z=0. Tính S=xz/y^2-yz/x^2-xy/z^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)
dung hằng đẳng thức đẹp :\(x^3+y^3+z^3=3xyz\) với \(x+y+z=0\)
\(\Rightarrow xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\frac{3}{xyz}=3\)
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\hept{\begin{cases}1+\frac{x}{y}+\frac{x}{z}=0\\\frac{y}{x}+1+\frac{y}{z}=0\\\frac{z}{x}+\frac{z}{y}+1=0\end{cases}}\)
\(\Rightarrow\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=-3\)
mà \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{yz+xz+xy}{xyz}=0\)
\(\Rightarrow yz+xz+xy=0\)
\(\Rightarrow\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\left(yz+xz+xy\right)=0\)
\(\Rightarrow\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=0\)
\(\Rightarrow\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=3\)
\(\Rightarrow\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=3\)
Học tốt
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
<=> \(\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)
<=> \(\left(\frac{1}{x}+\frac{1}{y}\right)^3=\left(-\frac{1}{z}\right)^3\)
<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{x^2y}+\frac{3}{xy^2}=-\frac{1}{z^3}\)
<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)\)
<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-\frac{3}{xy}.\left(-\frac{1}{z}\right)\)
<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Khi đó: P = \(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=\frac{xyz}{z^3}+\frac{xyz}{x^3}+\frac{xyz}{y^3}=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)
Với x,y,z khác 0 ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0=>\frac{yz+xz+xy}{xyz}=0=>yz+xz+xy=0\)
Ta luôn có nếu a+b+c=0 thì a3+b3+c3=3abc
Vì xy+yz+zx=0 nên x3y3+y3z3+z3x3=3x2y2z2
Với x3y3+y3z3+z3x3=3x2y2z2 ta có:
\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{y^3z^3+x^3z^3+x^3y^3}{x^2y^2z^2}=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)
Vậy ....
Ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
\(\Rightarrow\dfrac{1}{z}=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow\left(\dfrac{1}{z}\right)^3=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3\)
\(\Rightarrow\dfrac{1}{z^3}=-\left(\dfrac{1}{x^3}+3\cdot\dfrac{1}{x^2}\cdot\dfrac{1}{y}+3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y^2}+\dfrac{1}{y^3}\right)\)
\(\Rightarrow\dfrac{1}{z^3}=-\dfrac{1}{x^3}-\dfrac{3}{x^2y}-\dfrac{3}{xy^2}-\dfrac{1}{y^3}\)
\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{x^3}+\dfrac{1}{y^3}=-3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y}\cdot\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{x^3}+\dfrac{1}{y^3}=-3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y}\cdot-\dfrac{1}{z}\)
\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{x^3}+\dfrac{1}{y^3}=3\cdot\dfrac{1}{xyz}\)
\(\Rightarrow xyz\cdot\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)
\(\Rightarrow\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=3\)
\(\Rightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)
Vậy \(A=3\)
nhấn vào đúng 0 sẽ ra kết quả mình làm bài này rồi