K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

Ta có \(S_{ABC}=S_{ABH}+S_{ACH}=54cm^2+96cm^2=150cm^2\)

25 tháng 6 2018

Chứng minh tam giác ABH đồng dạng với tam giác ACH \((ABH=ACH\)cùng phụ\()\)

\(\Leftrightarrow\frac{AB^2}{AC^2}=\frac{AH^2}{BH^2}=\frac{S_{BHC}}{S_{AHC}}=\frac{54}{96}=\frac{9}{16}\Leftrightarrow\frac{AH}{BH}=\sqrt{\frac{9}{16}}=\frac{3}{4}=x\Rightarrow\)

\(\Rightarrow AH=4x;HB=3x\)

\(S_{ABH}=\frac{1}{2}AB\cdot BH=54\Rightarrow\frac{1}{2}\cdot4x\cdot3x=54\Rightarrow6x^2=54\Rightarrow x^2=9\Rightarrow x=3\)

\(\Rightarrow HB=3\cdot3=9;AH=4\cdot3=12\)

\(S_{ACH}=\frac{1}{2}AC\cdot CH=96\Rightarrow AC=\frac{96}{6}=16cm\)

\(\Rightarrow BC=HB+HC=9+16=25cm\)

Hình vẽ cho bạn dựa theo :

96 54 C y H A B x

Chúc bạn học tốt~

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b:AB=căn 3,6*10=6(cm)

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>S HAB/S HCA=(AB/CA)^2

Tham khảo:

 

3 tháng 3 2016

Sade=320

Sadc=800

26 tháng 3 2022

Giúp mình với