K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

ta có 5x=10z=> x=2z=> y=3z

Tháy vào, ta có \(M=\frac{4z^2-12z^2}{4z^2+9z^2}=\frac{-8z^2}{13z^2}=-\frac{8}{13}\)

28 tháng 6 2019

Ta có:

\(3x-y+2x+y=3z+7z\) 

\(5x=10z\) 

\(x=2z\) 

thay:\(4z+y=7z\) \(\Rightarrow y=3z\) 

Thay vào M ta đc:M=\(\frac{4z^2-12z^2}{4z^2+9z^2}\) =\(\frac{-8z^2}{13z^2}=\frac{-8}{13}\) 

vậy\(M=\frac{-8}{13}\) nếu\(3x-y=3z;2x+y=7z\) 

25 tháng 6 2018

\(3x-y=3z\Rightarrow-y=3z-3x\Rightarrow y=3x-3z\)

\(2x+y=7z\Rightarrow y=7z-2x\)\(\Rightarrow3x-3z=7z-2x=y\Rightarrow3x-3z-7z+2x=5x-10z=0\Rightarrow x-2z=0\Rightarrow x=2z\)

\(2x+y=7z\Rightarrow2\cdot2z+y=7z\Rightarrow4z+y=7z\Rightarrow y=3z\)

\(M=\frac{x^2-2xy}{x^2+y^2}=\frac{\left(2z\right)^2-2\cdot2z\cdot3z}{\left(2z\right)^2+\left(3z\right)^2}=\frac{4z^2-12z^2}{4z^2+9z^2}=-\frac{8z^2}{13z^2}=-\frac{8}{13}\)

16 tháng 12 2020

Ta có: \(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)

\(\Leftrightarrow3x-y+2x+y=10z\)

\(\Leftrightarrow5x=10z\)

hay x=2z

Thay x=2z vào biểu thức 3x-y=3z, ta được:

\(3\cdot2z-y=3z\)

\(\Leftrightarrow6z-y=3z\)

hay y=3z

Thay x=2z và y=3z vào biểu thức \(M=\dfrac{x^2-2xy}{x^2+y^2}\), ta được:

\(M=\dfrac{\left(2z\right)^2-2\cdot2z\cdot3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{13z^2}=\dfrac{-8z^2}{13z^2}=\dfrac{-8}{13}\)

Vậy: \(M=\dfrac{-8}{13}\)

16 tháng 12 2020

\(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5x=10z\\3x-y=3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2z\\3.2z-y=3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=3.2z-3z=6z-3z=3z\end{matrix}\right.\)

Có: \(M=\dfrac{x^2-2xy}{x^2+y^2}=\dfrac{\left(2z\right)^2-2.2z.3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{4z^2+9z^2}=\dfrac{-8z^2}{13z^2}==-\dfrac{8}{13}\)

 

23 tháng 11 2016

Mình sửa lại đề cho đúng nhé

\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2z\\y=3z\end{cases}}\)

Thế vô M ta được

23 tháng 11 2016

\(M=\frac{x^2-2xy}{x^2+y^2}=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=-\frac{8}{13}\)

2 tháng 12 2017

Ta có:

\(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)\(\left\{{}\begin{matrix}5x=10z\\2x+y=7z\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=2z\\y=3z\end{matrix}\right.\)

Thay x = 2z và y = 3z vào biểu thức M ta được:

M = \(\dfrac{\left(2z\right)^2-2.2z.3z}{\left(2z\right)^2+\left(3z\right)^2}\)

= \(\dfrac{4z^2-12z^2}{4z^2+9z^2}\)

= \(\dfrac{-8z^2}{13z^2}\)

= \(\dfrac{-8}{13}\)

Vậy...

27 tháng 2 2017

Từ 3x – y = 3z và 2x + y = 7z ⇒ x = 2z; y = 3z. Thay vào M ta được

Tìm giá trị của phân thức khi biến thỏa mãn điều kiện cho trước | Toán lớp 8

11 tháng 3 2022

A = 3x^3 +6x^2 + 3xy^3

x= 1 phần 2 ;  p = -1 phần 3

A=3.1 phần 2^3 . -1 phần 3     + 6.(1 phần 2)^2 . (-1 Phần 3)^2+3 1 phần 2 . (-1 phần 3)^3

=-1 phần 8      + -1 phần 2 - 1 phần 2

= -1 phần 4

NM
26 tháng 1 2021

ta có hệ 

\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\)cộng hai phương trình lại , ta có \(5x=10z\Rightarrow x=2z\Rightarrow y=3z\) thế vào M ta có

\(M=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=\frac{4-12}{4+9}=-\frac{8}{13}\)