K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2020

Ta có: \(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)

\(\Leftrightarrow3x-y+2x+y=10z\)

\(\Leftrightarrow5x=10z\)

hay x=2z

Thay x=2z vào biểu thức 3x-y=3z, ta được:

\(3\cdot2z-y=3z\)

\(\Leftrightarrow6z-y=3z\)

hay y=3z

Thay x=2z và y=3z vào biểu thức \(M=\dfrac{x^2-2xy}{x^2+y^2}\), ta được:

\(M=\dfrac{\left(2z\right)^2-2\cdot2z\cdot3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{13z^2}=\dfrac{-8z^2}{13z^2}=\dfrac{-8}{13}\)

Vậy: \(M=\dfrac{-8}{13}\)

16 tháng 12 2020

\(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5x=10z\\3x-y=3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2z\\3.2z-y=3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=3.2z-3z=6z-3z=3z\end{matrix}\right.\)

Có: \(M=\dfrac{x^2-2xy}{x^2+y^2}=\dfrac{\left(2z\right)^2-2.2z.3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{4z^2+9z^2}=\dfrac{-8z^2}{13z^2}==-\dfrac{8}{13}\)

 

NM
26 tháng 1 2021

ta có hệ 

\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\)cộng hai phương trình lại , ta có \(5x=10z\Rightarrow x=2z\Rightarrow y=3z\) thế vào M ta có

\(M=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=\frac{4-12}{4+9}=-\frac{8}{13}\)

25 tháng 6 2018

\(3x-y=3z\Rightarrow-y=3z-3x\Rightarrow y=3x-3z\)

\(2x+y=7z\Rightarrow y=7z-2x\)\(\Rightarrow3x-3z=7z-2x=y\Rightarrow3x-3z-7z+2x=5x-10z=0\Rightarrow x-2z=0\Rightarrow x=2z\)

\(2x+y=7z\Rightarrow2\cdot2z+y=7z\Rightarrow4z+y=7z\Rightarrow y=3z\)

\(M=\frac{x^2-2xy}{x^2+y^2}=\frac{\left(2z\right)^2-2\cdot2z\cdot3z}{\left(2z\right)^2+\left(3z\right)^2}=\frac{4z^2-12z^2}{4z^2+9z^2}=-\frac{8z^2}{13z^2}=-\frac{8}{13}\)

24 tháng 6 2018

ta có 5x=10z=> x=2z=> y=3z

Tháy vào, ta có \(M=\frac{4z^2-12z^2}{4z^2+9z^2}=\frac{-8z^2}{13z^2}=-\frac{8}{13}\)

28 tháng 6 2019

Ta có:

\(3x-y+2x+y=3z+7z\) 

\(5x=10z\) 

\(x=2z\) 

thay:\(4z+y=7z\) \(\Rightarrow y=3z\) 

Thay vào M ta đc:M=\(\frac{4z^2-12z^2}{4z^2+9z^2}\) =\(\frac{-8z^2}{13z^2}=\frac{-8}{13}\) 

vậy\(M=\frac{-8}{13}\) nếu\(3x-y=3z;2x+y=7z\) 

23 tháng 11 2016

Mình sửa lại đề cho đúng nhé

\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2z\\y=3z\end{cases}}\)

Thế vô M ta được

23 tháng 11 2016

\(M=\frac{x^2-2xy}{x^2+y^2}=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=-\frac{8}{13}\)

2 tháng 12 2017

Ta có:

\(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)\(\left\{{}\begin{matrix}5x=10z\\2x+y=7z\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=2z\\y=3z\end{matrix}\right.\)

Thay x = 2z và y = 3z vào biểu thức M ta được:

M = \(\dfrac{\left(2z\right)^2-2.2z.3z}{\left(2z\right)^2+\left(3z\right)^2}\)

= \(\dfrac{4z^2-12z^2}{4z^2+9z^2}\)

= \(\dfrac{-8z^2}{13z^2}\)

= \(\dfrac{-8}{13}\)

Vậy...

16 tháng 12 2020

Ta có: \(x^2-2y^2=xy\)

\(\Leftrightarrow x^2-xy-2y^2=0\)

\(\Leftrightarrow x^2-2xy+xy-2y^2=0\)

\(\Leftrightarrow x\left(x-2y\right)+y\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)

Vì \(x+y\ne0\) nên x-2y=0

hay x=2y

Thay x=2y vào biểu thức \(A=\dfrac{x-y}{x+y}\), ta được: 

\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

Vậy: \(A=\dfrac{1}{3}\)

20 tháng 11 2023

1: \(C=\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}+\dfrac{y}{y-x}+\dfrac{2xy}{x^2-y^2}\right)\)

\(=\dfrac{\left(x+y\right)^2-4xy}{x+y}:\left(\dfrac{x}{x+y}-\dfrac{y}{x-y}+\dfrac{2xy}{\left(x-y\right)\left(x+y\right)}\right)\)

\(=\dfrac{x^2+2xy+y^2-4xy}{x+y}:\dfrac{x\left(x-y\right)-y\left(x+y\right)+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{x^2-2xy+y^2}{x+y}:\dfrac{x^2-xy-xy-y^2+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{\left(x-y\right)^2}{x+y}\cdot\dfrac{x^2-y^2}{x^2-y^2}=\dfrac{\left(x-y\right)^2}{x+y}\)

2: \(\left(x^2-y^2\right)\cdot C=-8\)

=>\(\left(x-y\right)\left(x+y\right)\cdot\dfrac{\left(x-y\right)^2}{x+y}=-8\)

=>\(\left(x-y\right)^3=-8\)

=>x-y=-2

=>x=y-2

\(M=x^2\left(x+1\right)-y^2\left(y-1\right)-3xy\left(x-y+1\right)+xy\)

\(=\left(y-2\right)^2\left(y-2+1\right)-y^2\left(y-1\right)-3xy\left(-2+1\right)+xy\)

\(=\left(y-1\right)\left[\left(y-2\right)^2-y^2\right]+3xy+xy\)

\(=\left(y-1\right)\left(-4y+4\right)+4xy\)

\(=-4\left(y-1\right)^2+4y\left(y-2\right)\)

\(=-4y^2+8y-4+4y^2-8y\)
=-4

20 tháng 11 2023

Em cảm ơn ạ.