Cho tam giác ABC vuông tại A có đường cao AH. Trên cạnh BC lấy điểm M sao cho CM = CA. Trên cạnh AB lấy điểm N sao cho AN = AH. Chứng minh
a. CAM=CMA b. CMA và MAN phụ nhau
c. AM là tia phân giác BAH d. MN vuông AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔCAM có CA=CM
nên ΔCAM cân tại C
=>góc CAM=góc CMA
b: góc CAM+góc NAM=90 độ
=>góc CMA+góc NAM=90 độ(ĐPCM)
c: góc HAM+góc CMA=90 độ
góc BAM+góc CAM=90 độ
mà góc CMA=góc CAM
nên góc HAM=góc BAM
=>AM là phân giác của góc BAH
d:
Xét ΔAHM và ΔANM có
AH=AN
góc HAM=góc NAM
AM chung
Do đó: ΔAHM=ΔANM
=>góc ANM=90 độ
=>NM vuông góc với AB
vô link này nha. bài này ý giống chỉ có tên điểm đổi thôi.
nguồn link:vô link này nha. các điểm của bài đổi thôi
Mã link:https://h.vn/hoi-dap/question/44109.html
Hình thì bạn tự vẽ nha
a . Do CM = CA
=> tam giác MCA cân tại C
=> góc CAM = góc CMA ( 2 góc ở đáy )
b .
a: ΔCAM cân tại C
=>góc CAM=góc CMA
b: góc HAM+góc CMA=90 độ
góc BAM+góc CAM=90 độ
mà góc CMA=góc CAM
nên góc HAM=góc BAM
=>ĐPCM
c: Xét ΔAHM và ΔANM có
AH=AN
góc HAM=góc NAM
AM chung
=>ΔAHM=ΔANM
=>góc AHM=góc ANM=90 độ
=>MN vuông góc AB
a) ta có: CM=CA (gt)
=> tam giác ACM cân tại C ( định lí tam giác cân)
=> góc CAM = góc CMA ( tính chất tam giác cân)
b) ta có: góc CAM = góc CMA (phần a)
mà góc CAM + góc MAN = 90 độ ( = góc BAC)
=> góc CMA + góc MAN = 90 độ
=> góc CMA và góc MAN phụ nhau
c) Xét tam giác AHM vuông tại H
có: góc CMA + góc MAH = 90 độ ( 2 góc phụ nhau)
mà góc CMA + góc MAN = 90 độ ( phần b)
=> góc CMA + góc MAH = góc CMA + góc MAN ( = 90 độ)
=> góc MAH = góc MAN
=> AM là tia phân giác góc BAH ( định lí tia phân giác)
d) Xét tam giác MAH và tam giác MAN
có: AH = AN (gt)
góc MAH = góc MAN ( phần c)
MA là cạnh chung
\(\Rightarrow\Delta MAH=\Delta MAN\left(c-g-c\right)\)
=> góc MHA = góc MNA = 90 độ ( 2 cạnh tương ứng)
=> góc MNA =90 độ
\(\Rightarrow MN\perp AB⋮N\) ( định lí đường vuông góc)
bn kẻ hình giúp mk nha! mk ko bk kẻ