chứng minh rằng
3x2+2x+4>0 với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left(x-2\right)^2-1< 0\forall x\)
b: Ta có: \(x^4\ge0\forall x\)
\(3x^2\ge0\forall x\)
Do đó: \(x^4+3x^2\ge0\forall x\)
\(\Leftrightarrow x^4+3x^2+3>0\forall x\)
c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)
\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)
Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)
\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)
x^2 + 2x + 2 = x^2 + 2.x.1 + 1^2 +1 = (x + 1)^2 + 1 > 0
-x^2 + 4x - 4 = -(x^2 - 2.x.2 + 2^2) = -(x - 2)^2 <= 0
a) ta co ; x^2+ 2x+ 2= (x2+2x+1)+1=(x+1)2+1>0
vi (x+1)2>hoặc=0;1>0suy ra x^2+ 2x+ 2>0
b)ta co -x2+4x-4=-(x2-4x+4)=-(x-2)2<0
= (x2-x+1)(x2+3x+10)+10 = P
x2-x+1=(x-\(\frac{1}{2}\))2+\(\frac{3}{4}\)>0
x2+3x+10=(x+\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0
vây P>0
Bài 1:
\(a,A=2x^2+2x+1=\left(x^2+2x+1\right)+x^2=\left(x+1\right)^2+x^2\\ Mà:\left(x+1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x+1\right)^2+x^2>0\forall x\in R\\ Vậy:A>0\forall x\in R\)
2:
a: =-(x^2-3x+1)
=-(x^2-3x+9/4-5/4)
=-(x-3/2)^2+5/4 chưa chắc <0 đâu bạn
b: =-2(x^2+3/2x+3/2)
=-2(x^2+2*x*3/4+9/16+15/16)
=-2(x+3/4)^2-15/8<0 với mọi x
\(F=\frac{3}{2}x^4-\frac{1}{16}x^4+\frac{1}{32}x^4-\frac{1}{4}x^4\)
\(F=\left(\frac{3}{2}-\frac{1}{16}+\frac{1}{32}-\frac{1}{4}\right)x^4\)
\(F=\frac{39}{32}x^4\)
Ta có : x4 có số mũ là 4 => x4 luôn dương với mọi x ( x khác 0 )
\(\frac{39}{32}>1\Rightarrow\frac{39}{32}>0\)
=> \(\frac{39}{32}x^4\)luôn dương với mọi x ( x khác 0 )
=> \(\frac{39}{32}x^4>0\)với mọi x ( x khác 0 )
=> \(F=\frac{3}{2}x^4-\frac{1}{16}x^4+\frac{1}{32}x^4-\frac{1}{4}x^4>0\forall x\left(x\ne0\right)\)
có 3x^2 + 2x + 4 = 2x^2 + x^2 + 2x +1 +3
= 2x^2 +3 + (x+1)^2
mà x^2 >=0 với mọi x
=> 2x^2 >=0 với mọi x
lại có (x+1)^2 >= 0 với mọi x
Suy ra 2x^2 + 3 + (x+1)^2 > 0 với mọi x ( đpcm )
\(3x^2+2x+4>0\)
\(\Leftrightarrow\)\(2x^2+x^2+2x+\frac{1}{4}+\frac{15}{4}>0\)
\(\Leftrightarrow\)\(\left(x^2+2x+\frac{1}{4}\right)+2x^2+\frac{15}{4}>0\)
\(\Leftrightarrow\) \(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{15}{4}>0\)
BĐt cuối cùng luôn đúng nên ta có đpcm