K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2023

\(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{120}\left(a\right)\)

\(\Rightarrow A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+\dfrac{1}{177}+...\dfrac{1}{200}\right)\)

\(\Rightarrow A>25.\dfrac{1}{125}+25.\dfrac{1}{150}+25.\dfrac{1}{175}+25.\dfrac{1}{200}\)

\(\Rightarrow A>\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\)

\(\Rightarrow A>\dfrac{168+140+120+105}{840}=\dfrac{533}{840}>\dfrac{5}{8}\left(\dfrac{533}{840}>\dfrac{525}{840}\right)\)

\(\Rightarrow A>\dfrac{5}{8}\left(1\right)\)

\(\left(a\right)\Rightarrow A=\left(\dfrac{1}{101}+...\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...\dfrac{1}{200}\right)\)

\(\Rightarrow A< 20.\dfrac{1}{100}+20.\dfrac{1}{120}+20.\dfrac{1}{140}+20.\dfrac{1}{160}+20.\dfrac{1}{180}\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{504+420+360+315+280}{2520}=\dfrac{1879}{2520}< \dfrac{3}{4}\left(\dfrac{1879}{2520}< \dfrac{1890}{2520}\right)\)

\(\Rightarrow A< \dfrac{3}{4}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{5}{8}< A< \dfrac{3}{4}\left(dpcm\right)\)

7 tháng 8 2020

A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Lại có B = \(\frac{1}{101.200}+\frac{1}{102.199}+...+\frac{1}{200.101}\)

=> 301B = \(\frac{301}{101.200}+\frac{301}{102.199}+...+\frac{301}{200.101}\) 

=> 301B = \(\frac{1}{101}+\frac{1}{200}+\frac{1}{102}+\frac{1}{199}+...+\frac{1}{200}+\frac{1}{101}=2\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)

=> B = \(\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)

Khi đó \(\frac{A}{B}=\frac{\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}{\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}=\frac{1}{\frac{2}{301}}=\frac{301}{2}=150,5\)

6 tháng 3 2016

cái này dễ lắm chỉ là chưa để ý thôi:

a,1/101>1/102>...>1/199>1/200

=>1/101+1/102+...+1/199+1/200<100*1/101=100/101<1

các phần khác làm tương tự

đánh mỏi tay quá duyệt luôn đi

16 tháng 3 2019

cái này ở trong học tốt toán 6 đúng không

18 tháng 3 2021

i

help me