K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

Bài 3 : 

a, \(A=\frac{3+\sqrt{5}}{\sqrt{5}+2}+\frac{\sqrt{5}}{\sqrt{5}-1}-\frac{3\sqrt{5}}{3+\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\frac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\frac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)

\(=\sqrt{5}-1+\frac{5+\sqrt{5}-9\sqrt{5}+15}{4}=\sqrt{5}-1+\frac{20-7\sqrt{5}}{4}\)

\(=\frac{4\sqrt{5}-4+20-7\sqrt{5}}{4}=\frac{-3\sqrt{5}+16}{4}\)

b, Với x >  0 

\(B=\left(\frac{x}{x+3\sqrt{x}}+\frac{1}{\sqrt{x}+3}\right):\left(1-\frac{2}{\sqrt{x}}+\frac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}+1}{\sqrt{x}+3}\right):\left(\frac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\left(\frac{\sqrt{x}+1}{\sqrt{x}+3}\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=1\)

NV
1 tháng 3 2023

27.

Bán kính mặt cầu ngoại tiếp tứ diện vuông được tính bằng:

\(R=\sqrt{\dfrac{OA^2+OB^2+OC^2}{4}}=\sqrt{\dfrac{1^2+2^2+3^2}{4}}=\dfrac{\sqrt{14}}{2}\)

28.

Từ giả thiết suy ra \(A\left(2;2;2\right)\)

Gọi điểm thuộc mặt Oxz có tọa độ dạng \(D\left(x;0;z\right)\)

\(\Rightarrow\overrightarrow{AD}=\left(x-2;-2;z-2\right)\)

\(\overrightarrow{BD}=\left(x+2;-2;z\right)\) ; \(\overrightarrow{CD}=\left(x-4;-1;z+1\right)\)

D cách đều A, B, C \(\Rightarrow\left\{{}\begin{matrix}AD=BD\\AD=CD\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2+4+\left(z-2\right)^2=\left(x+2\right)^2+4+z^2\\\left(x-2\right)^2+4+\left(z-2\right)^2=\left(x-4\right)^2+1+\left(z+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+z=1\\2x-3z=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}z=-\dfrac{1}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\)

\(\Rightarrow P\left(\dfrac{3}{4};0;-\dfrac{1}{2}\right)\)

NV
1 tháng 3 2023

29.

Do tâm I mặt cầu thuộc Oz nên tọa độ có dạng: \(I\left(0;0;z\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AI}=\left(-3;1;z-2\right)\\\overrightarrow{BI}=\left(-1;-1;z+2\right)\end{matrix}\right.\)

Mặt cầu qua A, B nên \(AI=BI\)

\(\Leftrightarrow3^2+1^2+\left(z-2\right)^2=1^2+1^2+\left(z+2\right)^2\)

\(\Leftrightarrow8z=8\Rightarrow z=1\)

\(\Rightarrow I\left(0;0;1\right)\Rightarrow R=IB=\sqrt{1^2+1^1+3^2}=\sqrt{11}\)

Phương trình mặt cầu:

\(x^2+y^2+\left(z-1\right)^2=11\)

21 tháng 1 2022

C3: Hệ bpt trở thành: \(\left\{{}\begin{matrix}x\ge1-m\\mx\ge2-m\end{matrix}\right.\)

a, Để hệ phương trình vô nghiệm thì \(m=0\)

b, Để hệ có nghiệm duy nhất thì \(\left\{{}\begin{matrix}m\ne0\\\dfrac{m-2}{m}=1-m\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\m=\pm\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow\) \(m=\pm\sqrt{2}\)

c, \(x\in\left[-1;2\right]\) \(\Leftrightarrow\) \(-1\le x\le2\)

Để mọi \(x\in\left[-1;2\right]\) là nghiệm của hệ bpt trên thì

\(\left\{{}\begin{matrix}-1\le1-m\le2\\-1\le\dfrac{2-m}{m}\le2\end{matrix}\right.\) với \(m\ne0\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2\ge m\ge-1\\m\ge\dfrac{2}{3}\end{matrix}\right.\) \(\left(m\ne0\right)\)

\(\Leftrightarrow\) \(2\ge m\ge\dfrac{2}{3}\)

Vậy \(m\in\left[\dfrac{2}{3};2\right]\) thì mọi \(x\in\left[-1;2\right]\) là nghiệm của hệ bpt

Chúc bn học tốt!

9 tháng 12 2021
Quả trứng có trước hay còn gà có trước ý Goole mà tra
9 tháng 12 2021

gà có trước thì mới đẻ được trứng

16 tháng 1 2022

PTHH : 2Al     +     6HCl  --> 2AlCl3   +    3H2 ↑   (1)

nAlCl3 = \(\dfrac{m}{M}=\dfrac{13,35}{27+35,5.3}=0.1\left(mol\right)\) 

Từ (1) => nHCl   =   2nH2  = 0.2 (mol)

=> mHCl = n.M  =  0.2 x  36.5 = 7.3 (g)

16 tháng 1 2022

\(PTHH:2Al+6HCl\rightarrow2AlCl_3+3H_2\\ n_{AlCl_3}=\dfrac{m}{M}=\dfrac{13,35}{133,5}=0,1\left(mol\right)\\ Theo.PTHH:n_{HCl}=3.n_{AlCl_3}=3.0,1=0,3\left(mol\right)\\ m_{HCl}=n.M=0,3.36,5=10,95\left(g\right)\)

15 tháng 10 2021

A

NV
22 tháng 7 2021

\(\Leftrightarrow sinx+sinax=\sqrt{3}cosx-\sqrt{3}cosax\)

\(\Leftrightarrow sinax+\sqrt{3}cosax=\sqrt{3}cosx-sinx\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}cosax+\dfrac{1}{2}sinax=\dfrac{\sqrt{3}}{2}cosx-\dfrac{1}{2}sinx\)

\(\Leftrightarrow cos\left(ax-\dfrac{\pi}{6}\right)=cos\left(x+\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}ax-\dfrac{\pi}{6}=x+\dfrac{\pi}{6}+k2\pi\\ax-\dfrac{\pi}{6}=-x-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(a-1\right)x=\dfrac{\pi}{3}+k2\pi\\\left(a+1\right)x=k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3\left(a-1\right)}+\dfrac{k2\pi}{a-1}\left(a\ne1\right)\\x=\dfrac{k2\pi}{a+1}\left(a\ne-1\right)\end{matrix}\right.\)

NV
2 tháng 1 2022

Phương trình hoành độ giao điểm (d) và (P):

\(x^2-2x-3=ax-a-3\)

\(\Leftrightarrow x^2-\left(a+2\right)x+a=0\) 

\(\Delta=\left(a+2\right)^2-4a=a^2+4>0;\forall a\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=a+2\\x_Ax_B=a\end{matrix}\right.\)

Mặt khác do A, B thuộc (d) nên: \(\left\{{}\begin{matrix}y_A=ax_A-a-3\\y_B=ax_B-a-3\end{matrix}\right.\)

\(y_A+y_B=0\)

\(\Leftrightarrow a\left(x_A+x_B\right)-2a-6=0\)

\(\Leftrightarrow a\left(a+2\right)-2a-6=0\)

\(\Leftrightarrow a^2-6=0\)

\(\Leftrightarrow a=\pm\sqrt{6}\)