Tính: \(\left(x^2-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt biểu thức trên là $A$ thì:
\(A=\frac{1}{x+1}:\frac{x^2+3x+2-2}{(x-1)(x+1)(x+2)}=\frac{1}{x+1}:\frac{x(x+3)}{(x-1)(x+1)(x+2)}\)
\(=\frac{1}{x+1}.\frac{(x-1)(x+1)(x+2)}{x(x+3)}=\frac{(x-1)(x+2)}{x(x+3)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
=1/x-1/x+2014
\(=\dfrac{x+2014-x}{x\left(x+2014\right)}=\dfrac{2014}{x\left(x+2014\right)}\)
a: \(y=\left(x-1\right)^3\)
=>\(y'=\left[\left(x-1\right)^3\right]'=3\left(x-1\right)^2\cdot\left(x-1\right)'\)
\(=3\left(x-1\right)^2\)
b: \(y=\left(x+2\right)\left(2x^2-3\right)\)
=>\(y'=\left(x+2\right)'\left(2x^2-3\right)+\left(x+2\right)\left(2x^2-3\right)'\)
=>\(y'=2x^2-3+2\left(x+2\right)\)
\(=2x^2+2x+1\)
c: \(y=\left(x-1\right)^2\left(x+2\right)\)
=>\(y=\left(x^2-2x+1\right)\left(x+2\right)\)
=>\(y'=\left(x^2-2x+1\right)'\left(x+2\right)-\left(x^2-2x+1\right)\left(x+2\right)'\)
=>\(y'=\left(2x-2\right)\left(x+2\right)-x^2+2x-1\)
\(=2x^2+4x-2x-4-x^2+2x-1\)
=>\(y'=x^2+4x-5\)
c: \(y=\left(x^2-1\right)\left(2x+1\right)\)
=>\(y'=\left(x^2-1\right)'\left(2x+1\right)+\left(x^2-1\right)\left(2x+1\right)'\)
\(=2x\left(2x+1\right)+2\left(x^2-1\right)\)
\(=4x^2+2x+2x^2-2=6x^2+2x-2\)
a: \(y=\left(x+2\right)\left(2x^2-3\right)\)
=>\(y'=\left(x+2\right)'\left(2x^2-3\right)+\left(x+2\right)\left(2x^2-3\right)'\)
=>\(y'=2x^2-3+\left(x+2\right)\cdot2x\)
\(\Leftrightarrow y'=2x^2-3+2x^2+4x=4x^2+4x-3\)
b: \(y=\left(x-1\right)^2\left(x+2\right)\)
=>\(y=\left(x^2-2x+1\right)\left(x+2\right)\)
=>\(y'=\left(x^2-2x+1\right)'\left(x+2\right)+\left(x^2-2x+1\right)\left(x+2\right)'\)
=>\(y'=\left(2x-2\right)\left(x+2\right)+\left(x^2-2x+1\right)\)
=>\(y'=2x^2+4x-2x-4+x^2-2x+1\)
=>\(y'=3x^2-3\)
c: \(y=\left(x^2-1\right)\left(2x+1\right)\)
=>\(y'=\left(x^2-1\right)'\left(2x+1\right)+\left(x^2-1\right)\left(2x+1\right)'\)
=>\(y'=2x\left(2x+1\right)+2\left(x^2-1\right)\)
=>\(y'=4x^2+2x+2x^2-2=6x^2+2x-2\)
d: \(y=\left(x+2\right)\left(2x^2-5\right)\)
=>\(y'=\left(x+2\right)'\left(2x^2-5\right)+\left(x+2\right)\left(2x^2-5\right)'\)
=>\(y'=2x^2-5+2x\left(x+2\right)=4x^2+4x-5\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
\(=\frac{1}{x}\)
ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
=\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
= \(\frac{1}{x}\)
Ta có: \(\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
\(=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
\(=\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
\(=\left(x^{16}-1\right)\left(x^{16}+1\right)\)
\(=x^{32}-1\)
Bạn tham khảo nhé!
Ta có \(\left(x-\dfrac{1}{x}\right):\left(x+\dfrac{1}{x}\right)=\dfrac{1}{2}\Leftrightarrow\dfrac{x^2-1}{x^2+1}=\dfrac{1}{2}\Leftrightarrow x^2=3\).
Do đó: \(\left(x^2-\dfrac{1}{x^2}\right):\left(x^2+\dfrac{1}{x^2}\right)=\dfrac{3-\dfrac{1}{3}}{3+\dfrac{1}{3}}=\dfrac{8}{10}=\dfrac{4}{5}\).
cách khác:
\(\left(x^2-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)
\(=\left[\left(x-1\right)\left(x^2+x+1\right)\right]\left[\left(x+1\right)\left(x^2-x+1\right)\right]\)
\(=\left(x^3-1\right)\left(x^3+1\right)\)
\(=x^6-1\)
minhf chịu