Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+.....+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)=\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+.....-\dfrac{1}{x+99}+\dfrac{1}{x+100}\)=\(\dfrac{1}{x}-\dfrac{1}{x+100}\)
=\(\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)
=\(\dfrac{x+100-x}{x\left(x+100\right)}=\dfrac{100}{x\left(x+100\right)}\)
a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3+2x^2-x=5x\left(2-x\right)-11\left(x+2\right)\)
=>-x^2+2x-1=10x-5x^2-11x-22
=>-x^2+2x-1=-5x^2-x-22
=>4x^2+3x+21=0
=>PTVN
b: \(\Leftrightarrow\left(x+10\right)\left(x+4\right)+3\left(x+4\right)\left(x-2\right)=4\left(x+10\right)\left(x-2\right)\)
=>x^2+14x+40+3(x^2+2x-8)=4(x^2+8x-20)
=>x^2+14x+40+3x^2+6x-24=4x^2+32x-80
=>20x+16=32x-80
=>-12x=-96
=>x=8
c: \(\Leftrightarrow6\left(x-3\right)+7\left(x-5\right)=13x+4\)
=>6x-18+7x-35=13x+4
=>-53=4(loại)
d: =>3(2x-1)-5(x-2)=3(x+7)
=>6x-3-5x+10=3x+21
=>3x+21=x+7
=>x=-7
e: =>x^3-6x^2+12x-8-x^3-3x^2-3x-1=-9x^2+1
=>-9x^2+9x-9=-9x^2+1
=>9x=10
=>x=10/9
Giải:
\(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-3\right)\left(x-2\right)}=\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-1\right)\left(x-4\right)}\)
ĐKXĐ: \(x\ne\left\{1;2;3;4\right\}\)
\(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-3\right)\left(x-2\right)}=\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-1\right)\left(x-4\right)}\)
\(\Rightarrow\left(x-3\right)\left(x-4\right)+\left(x-1\right)\left(x-4\right)=\left(x-1\right)\left(x-2\right)+\left(x-2\right)\left(x-3\right)\)
\(\Leftrightarrow\left(x-4\right)\left[\left(x-3\right)+\left(x-1\right)\right]=\left(x-2\right)\left[\left(x-1\right)+\left(x-3\right)\right]\)
\(\Leftrightarrow x-4=x-2\)
\(\Leftrightarrow0x=2\)
Vậy ...
a)
\(\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{x+1-x}{x\left(x+1\right)}=\dfrac{1}{x\left(x+1\right)}\left(đpcm\right)\)
b)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{x+5}\\ =\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}\\ =\dfrac{1}{x}\)
a) 1x−1−3x2x3−1=2xx2+x+11x−1−3x2x3−1=2xx2+x+1
Ta có: x3−1=(x−1)(x2+x+1)x3−1=(x−1)(x2+x+1)
=(x−1)[(x+12)2+34]=(x−1)[(x+12)2+34] cho nên x3 – 1 ≠ 0 khi x – 1 ≠ 0⇔ x ≠ 1
Vậy ĐKXĐ: x ≠ 1
Khử mẫu ta được:
x2+x+1−3x2=2x(x−1)⇔−2x2+x+1=2x2−2xx2+x+1−3x2=2x(x−1)⇔−2x2+x+1=2x2−2x
⇔4x2−3x−1=0⇔4x2−3x−1=0
⇔4x(x−1
a: \(=\dfrac{1}{\left(x-y\right)\left(y-z\right)}-\dfrac{1}{\left(y-z\right)\left(x-z\right)}-\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)
\(=\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)
b: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(x-y\right)\left(y-z\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{z\left(y^2-x^2\right)-z^2\left(y-x\right)-xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{\left(x-y\right)\left[-z\left(x+y\right)+z^2+xy\right]}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{-zx-zy+z^2+xy}{xyz\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{z\left(z-x\right)-y\left(z-x\right)}{xyz\left(y-z\right)\left(x-z\right)}=\dfrac{1}{xyz}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2017}-\dfrac{1}{x+2018}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+2018}=\dfrac{2018}{x\left(x+2018\right)}\)
\(B=\dfrac{1}{4}\left(\dfrac{1}{x\left(x+2\right)}-\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}-\dfrac{1}{\left(x+4\right)\left(x+6\right)}+...+\dfrac{1}{\left(x+96\right)\left(x+98\right)}-\dfrac{1}{\left(x+98\right)\left(x+100\right)}\right)\)
\(B=\dfrac{1}{4}\left(\dfrac{1}{x\left(x+2\right)}-\dfrac{1}{\left(x+98\right)\left(x+100\right)}\right)=\dfrac{1}{4}\left(\dfrac{x^2+198x+9800-x^2-2x}{x\left(x+2\right)\left(x+98\right)\left(x+100\right)}\right)\)
\(B=\dfrac{196x+9800}{4x\left(x+2\right)\left(x+98\right)\left(x+100\right)}\)
rút gọn hộ mk nha mn
cảm ơn trc nghen