Cho x > y và xy = 1. Chứng minh: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
\(\Leftrightarrow\frac{\left(x-y\right)^2+2xy}{x-y}\ge2\sqrt{2}\)
\(\Leftrightarrow\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{2}\)
mặt khác \(x>y\Rightarrow x-y>0\)
áp dụng BĐT CÔ-SI CHO hai số dương ta được \(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\frac{2}{x-y}}\ge2\sqrt{2}\)
dấu''='' xảy ra khi và chỉ khi \(\left(x-y\right)=\frac{2}{x-y}\)
Trường hợp dấu băng xảy ra chưa rỗ, còn cần phải giải thêm