K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)

\(\Leftrightarrow\dfrac{5x^2-12}{\left(x-1\right)\left(x+1\right)}+\dfrac{3x+3}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x^2-5x}{\left(x+1\right)\left(x-1\right)}\)

Suy ra: \(5x^2+3x-9=5x^2-5x\)

\(\Leftrightarrow8x=9\)

hay \(x=\dfrac{9}{8}\left(tm\right)\)

2: Ta có: \(\dfrac{3}{x-5}-\dfrac{15-3x}{x^2-25}=\dfrac{3}{x+5}\)

\(\Leftrightarrow\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}+\dfrac{3x-15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3x-15}{\left(x+5\right)\left(x-5\right)}\)

Suy ra: \(6x=3x-15\)

\(\Leftrightarrow3x=-15\)

hay \(x=-5\left(loại\right)\)

 

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

2. ĐKXĐ: $x\neq \pm 5$
PT \(\Leftrightarrow \frac{3}{x-5}+\frac{3x-15}{x^2-25}=\frac{3}{x+5}\)

\(\Leftrightarrow \frac{3}{x-5}+\frac{3(x-5)}{(x-5)(x+5)}=\frac{3}{x+5}\)

\(\Leftrightarrow \frac{3}{x-5}+\frac{3}{x+5}=\frac{3}{x+5}\Leftrightarrow \frac{3}{x-5}=0\) (vô lý)

Vậy pt vô nghiệm.

 

a: 3x-5>15-x

=>4x>20

hay x>5

b: \(3\left(x-2\right)\left(x+2\right)< 3x^2+x\)

=>3x2+x>3x2-12

=>x>-12

19 tháng 1 2021

1) -2(x - 3) + 5x (x - 1) = 5x (x + 1)

<=> -2x + 6 + 5x2 - 5x = 5x2 + 5x

<=> 6 = 5x2 + 5x + 2x - 5x2 + 5x

<=> 6 = 12x

<=> \(\dfrac{6}{12}\) = x = 0,5 

vậy tập nghiệm S ={0,5}

2) 7 - (2x + 4) = -(x + 4) 

<=> 7 - 2x - 4 = -x - 4

<=> 7 - 4 + 4 = -x + 2x

<=> 7 = x 

vậy tập nghiệm S ={7}

Bài 1: Giải các phương trình: a)(5x^ 2 -45).( 4x-1 5 - 2x+1 3 )=0 b) (x^ 2 -2x+6).(2x-3)=4x^ 2 -9 d) 3 5x-1 + 2 3-5x = 4 (1-5x).(5x-3) c) (2x + 19)/(5x ^ 2 - 5) - 17/(x ^ 2 - 1) = 3/(1 - x) e) 3/(2x + 1) = 6/(2x + 3) + 8/(4x ^ 2 + 8x + 3) (x^ 2 -3x+2).(x^ 2 -9x+20)=40 (2x + 5)/95 + (2x + 6)/94 + (2x + 7)/93 = (2x + 93)/7 + (2x + 94)/6 + (2x + 95)/5 Bài 2: Giải các phương trình sau: g) a) (x + 2) ^ 2 + |5 - 2x| = x(x + 5) + 5 - 2x b) (x - 1) ^ 2 + |x + 21| - x ^ 2 - 13 =...
Đọc tiếp

Bài 1: Giải các phương trình: a)(5x^ 2 -45).( 4x-1 5 - 2x+1 3 )=0 b) (x^ 2 -2x+6).(2x-3)=4x^ 2 -9 d) 3 5x-1 + 2 3-5x = 4 (1-5x).(5x-3) c) (2x + 19)/(5x ^ 2 - 5) - 17/(x ^ 2 - 1) = 3/(1 - x) e) 3/(2x + 1) = 6/(2x + 3) + 8/(4x ^ 2 + 8x + 3) (x^ 2 -3x+2).(x^ 2 -9x+20)=40 (2x + 5)/95 + (2x + 6)/94 + (2x + 7)/93 = (2x + 93)/7 + (2x + 94)/6 + (2x + 95)/5 Bài 2: Giải các phương trình sau: g) a) (x + 2) ^ 2 + |5 - 2x| = x(x + 5) + 5 - 2x b) (x - 1) ^ 2 + |x + 21| - x ^ 2 - 13 = 0 d) |3x + 2| + |1 - 2x| = 5 - |x| c) |5 - 2x| = |1 - x| Bài 3: Cho biểu thức A = ((x + 2)/(x + 3) - 5/(x ^ 2 + x - 6) + 1/(2 - x)) / ((x ^ 2 - 5x + 4)/(x ^ 2 - 4)) a) Rút gọn A. b) Tim x de A = 3/2 c) Tìm giá trị nguyên c dot u a* d hat e A có giá trị nguyên. B = ((2x)/(2x ^ 2 - 5x + 3) - 5/(2x - 3)) / (3 + 2/(1 - x)) Bài 4: Cho biểu thức a) Rút gọn B. b) Tim* d tilde e B>0 . c) Tim* d hat e B= 1 6-x^ 2 . Bài 5: Cho biểu thức H = (2/(1 + 2x) + (4x ^ 2)/(4x ^ 2 - 1) - 1/(1 - 2x)) / (1/(2x - 1) - 1/(2x + 1)) a) Rút gọn H. b) Tìm giá trị nhỏ nhất của H. c)Tim* d vec e bi vec e u thic H= 3 2

4
8 tháng 3 2022

roois vãi

8 tháng 3 2022

-Đăng tách câu hỏi bạn nhé.

18 tháng 3 2022

\(a,2x-5=-x+4\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\\ b,\left(4x-10\right)\left(25+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x-10=0\\25+5x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-5\end{matrix}\right.\\ c,\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\\ \Leftrightarrow\dfrac{2x}{6}-\dfrac{3\left(2x+1\right)}{6}-\dfrac{x}{6}+\dfrac{6x}{6}=0\\ \Leftrightarrow2x-6x-3-x+6x=0\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\)

d, ĐKXĐ:\(x\ne-2,x\ne3\)

\(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\\ \Leftrightarrow\dfrac{\left(x+2\right)\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}+\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(3-x\right)}-\dfrac{5x}{\left(x+2\right)\left(3-x\right)}-\dfrac{2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=0\\ \Leftrightarrow\dfrac{-x^2+x+6}{\left(x+2\right)\left(3-x\right)}+\dfrac{x^2+2x}{\left(x+2\right)\left(3-x\right)}-\dfrac{5x}{\left(x+2\right)\left(3-x\right)}-\dfrac{6-2x}{\left(x+2\right)\left(3-x\right)}=0\)

\(\Leftrightarrow\dfrac{-x^2+x+6+x^2+2x-5x-6+2x}{\left(x+2\right)\left(3-x\right)}=0\\ \Rightarrow0=0\left(luôn.đúng\right)\)

20 tháng 3 2020

Ta có: 5x + 3x2 = 0 

<=> x(3x + 5) = 0

<=> \(\orbr{\begin{cases}x=0\\3x+5=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x=-\frac{5}{3}\end{cases}}\) Vậy S = {0; -5/3)

5(x2 - 2x) = (3 + 5x)(x - 1)

<=> 5x2 - 10x = 5x2 - 2x - 3

<=> 5x2 - 10x - 5x2 + 2x = -3

<=> -8x = -3

<=> x = 3/8 Vậy S = {3/8}

(4x + 3)2 = 4(x - 1)2

<=> (4x + 3)2 - (2x - 2)2 = 0

<=> (4x + 3 - 2x + 2)(4x +3 + 2x - 2) = 0

<=> (2x + 5)(6x + 1) = 0

<=> \(\orbr{\begin{cases}2x+5=0\\6x+1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=-\frac{1}{6}\end{cases}}\)  Vậy S = {-5/3; -1/6}

20 tháng 3 2020

a) 5x + 3.x2 = 0

<=>x . ( 5 + 3x ) = 0

<=> \(\orbr{\begin{cases}x=0\\5+3.x=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=0\\z=-\frac{5}{3}\end{cases}}\)

Nghiệm cuối cùng là :{ 0;\(-\frac{5}{3}\)}

b) 5.( x2 - 2.x ) = ( 3 + 5.x ) . ( x- 1 )

<=>5.x2 - 10.x = 3.x -3 + 5.x2 - 5.x

<=> -10.x         = 3.x - 3-5.x 

<=> -10.x        = -2.x - 3

<=> -8.x          = -3

<=> x              = \(\frac{3}{8}\)

Vậy x = \(\frac{3}{8}\)

c) ( 4x + 3 )2 = 4. ( x - 1 )2 

<=> 16.x2 + 24.x + 9 = 4.( x2 -2.x + 1 )

<=> 16.x2+24.x + 9  = 4.x2 -8.x + 4

<=> 16.x2 +24.x + 9 -4.x2 + 8.x - 4= 0

<=> 12.x2 + 32.x + 5  = 0

<=> 12.x2 + 30.x + 2.x + 5 = 0

<=> 6.x . ( 2.x + 5 ) + 2.x + 5 =0

<=> ( 2.x + 5 ) . ( 6.x + 1 ) =0

<=> \(\orbr{\begin{cases}2.x+5=0\\6.x+1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=-\frac{1}{6}\end{cases}}\)

Nghiệm cuối cùng là : { \(-\frac{5}{2};-\frac{1}{6}\)}

11 tháng 5 2023

`|5x| = - 3x + 2`

Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :

`5x =-3x+2`

`<=> 5x +3x=2`

`<=> 8x=2`

`<=> x= 2/8=1/4` ( thỏa mãn )

Nếu `5x<0<=>x<0` thì phương trình trên trở thành :

`-5x = -3x+2`

`<=>-5x+3x=2`

`<=> 2x=2`

`<=>x=1` ( không thỏa mãn ) 

Vậy pt đã cho có nghiệm `x=1/4`

__

`6x-2<5x+3`

`<=> 6x-5x<3+2`

`<=>x<5`

Vậy bpt đã cho có tập nghiệm `x<5`