K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2018

Sửa đề

\(A=cos^212+cos^223+cos^234+cos^245+cos^256+cos^267+\)

\(=\left(cos^212+cos^278\right)+\left(cos^223+cos^267\right)+\left(cos^234+cos^256\right)+cos^245\)

\(=\left(cos^212+sin^212\right)+\left(cos^223+sin^223\right)+\left(cos^234+sin^234\right)+cos^245\)

\(=1+1+1+\frac{\sqrt{2}}{2}=\frac{6+\sqrt{2}}{2}\)

NV
6 tháng 8 2021

\(A.sin\dfrac{\pi}{7}=sin\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=\dfrac{1}{2}sin\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=\dfrac{1}{4}sin\left(\dfrac{4\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=\dfrac{1}{8}sin\left(\dfrac{8\pi}{7}\right)\)

\(=\dfrac{1}{8}sin\left(\pi+\dfrac{\pi}{7}\right)=\dfrac{1}{8}sin\left(-\dfrac{\pi}{7}\right)\)

\(=-\dfrac{1}{8}sin\left(\dfrac{\pi}{7}\right)\)

\(\Rightarrow A=-\dfrac{1}{8}\)

19 tháng 8 2021

Ta có : \(cos^215^o=sin^275^o;cos^225^o=sin^265^o;cos^235^o=sin^255^o;\frac{cos^245^o}{2}=\frac{sin^245^o}{2}\)

Khi đó \(N=sin^275^o+cos^275^o-\left(sin^265^o+cos^265^o\right)+sin^255^o+cos^255^o-\left(\frac{sin^245^0+cos^245^o}{2}\right)\)

Áp dụng công thức \(sin^2a+cos^2a=1\)ta được 

\(N=1-1+1-\frac{1}{2}=\frac{1}{2}\)

Vậy N = 1/2 

câu b chờ chút mình làm cho nhé <33

19 tháng 8 2021

Ta có : \(cos^21^o=sin^289^o;cos^22^o=sin^288^o;...;cos^244^o=sin^246^o;\frac{cos^245^o}{2}=\frac{sin^245^o}{2}\)

Khi đó \(A=\frac{sin^245^o+cos^245^o}{2}+\left(sin^246^0+cos^246^o\right)+...+\left(sin^289^o+cos^289^o\right)\)

Áp dụng ct \(sin^2a+cos^2a=1\)ta được \(A=\frac{1}{2}+1+1+...+1=...\)

P/S : bạn tự đếm xem bao nhiêu cặp nhé ;) tìm ssh á 

8 tháng 8 2020

\(A=\frac{\cos57}{\cos57}+\frac{\cot58}{\cot58}-2\left(1+1\right)\)\()\)

=1+1-4

=-2

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Lời giải:
\(M=\frac{\frac{\sin a}{\cos a}+1}{\frac{\sin a}{\cos a}-1}=\frac{\tan a+1}{\tan a-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=-4\)

\(N = \frac{\frac{\sin a\cos a}{\cos ^2a}}{\frac{\sin ^2a-\cos ^2a}{\cos ^2a}}=\frac{\frac{\sin a}{\cos a}}{(\frac{\sin a}{\cos a})^2-1}=\frac{\tan a}{\tan ^2a-1}=\frac{\frac{3}{5}}{\frac{3^2}{5^2}-1}=\frac{-15}{16}\)

27 tháng 8 2021

a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)

\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)

\(=\left(1-sin^2a\right)-sin^2a=1\)

27 tháng 8 2021

b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)

\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2-sin^2a-cos^2a=2-1=1\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(A = 2{\sin ^2}\alpha  + 5{\cos ^2}\alpha  = 2({\sin ^2}\alpha  + {\cos ^2}\alpha ) + 3{\cos ^2}\alpha \)

Mà \({\cos ^2}\alpha  + {\sin ^2}\alpha  = 1;\cos \alpha  =  - \frac{{\sqrt 2 }}{2}.\)

\( \Rightarrow A = 2 + 3.{\left( { - \frac{{\sqrt 2 }}{2}} \right)^2} = 2 + 3.\frac{1}{2} = \frac{7}{2}.\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(A = \frac{{\sin \frac{\pi }{{15}}\cos \frac{\pi }{{10}} + \sin \frac{\pi }{{10}}\cos \frac{\pi }{{15}}}}{{\cos \frac{{2\pi }}{{15}}\cos \frac{\pi }{5} - \sin \frac{{2\pi }}{{15}}\sin \frac{\pi }{5}}} = \frac{{\sin \left( {\frac{\pi }{{15}} + \frac{\pi }{{10}}} \right)}}{{\cos \left( {\frac{{2\pi }}{{15}} + \frac{\pi }{5}} \right)}} = \frac{{\sin \frac{\pi }{6}}}{{\cos \frac{\pi }{3}}} = 1\)

b) \(B = \sin \frac{\pi }{{32}}\cos \frac{\pi }{{32}}\cos \frac{\pi }{{16}}\cos \frac{\pi }{8} = \frac{1}{2}\sin \frac{\pi }{{16}}.\cos \frac{\pi }{{16}}.\cos \frac{\pi }{8} = \frac{1}{4}\sin \frac{\pi }{8}.\cos \frac{\pi }{8} = \frac{1}{8}\sin \frac{\pi }{4} = \frac{1}{8}.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 }}{{16}}\;.\)

31 tháng 10 2021

\(P=4\left[\left(cos^21^0+cos^289^0\right)+\left(cos^22^0+cos^288^0\right)+...+\left(cos^244^0+cos^246^0\right)+cos^245^0\right]\)

\(=4\left[\left(cos^21^0+sin^21^0\right)+\left(cos^22^0+sin^22^0\right)+...+\left(cos^244^0+sin^244^0\right)+cos^245^0\right]\)

\(=4\left(1+1+...+1+\frac{\sqrt{2}}{2}\right)\)