K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2018

*định lý Py-ta-go:

trong tam giác vuông, tổng bình phương hai cạnh góc vuông bằng bình phương của cạnh huyền

*BĐT tam giác:

trong một tam giác bất kỳ, tổng độ dài 2 cạnh luôn lớn hơn độ dài cạnh còn lại

*các trường hợp bằng nhau của tam giác:

+ trường hợp bằng nhau thường của tam giác

+ cạnh - cạnh - cạnh

+ cạnh - góc - cạnh

+góc - cạnh -  góc

- Trường hợp bằng nhau đặc biệt của tam giác

+ cạnh huyền -  góc nhọn

+  cạnh góc vuông -  góc nhọn kề

+ 2 cạnh góc vuông

+ cạnh huyền -  cạnh góc vuông

6 tháng 6 2018

a)Định lý Pi-ta-go

* Trong 1 tam giác vuông: bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông

VD: \(\Delta ABC:\)vuông tại A

Ta có BC2 = AB2 + AC2

b) Bất đẳng thức trong tam giác

*Định lý. Trong một tam giác, tổng độ dài hai cạnh bất kỳ bao giờ cũng lớn hơn độ dài hai cạnh còn lại

A B C

GT : ∆ ABC

KL :  AB +AC > BC

       AB + BC >AC

       AC + BC > AB

`#3107.101107`

\(B=4+4^2+4^3+...+4^{89}+4^{90}\)

\(=\left(4+4^2+4^3\right)+...+\left(4^{88}+4^{89}+4^{90}\right)\)

\(=4\left(1+4+4^2\right)+...+4^{88}\left(1+4+4^2\right)\)

\(=\left(1+4+4^2\right)\left(4+...+4^{88}\right)\)

\(=21\left(4+4^{88}\right)\)

Vì \(21\left(4+4^{88}\right)\) `\vdots 21`

`\Rightarrow B \vdots 21`

Vậy, `B \vdots 21.`

16 tháng 12 2020

\(X=\left(a+b\right)^n=\sum\limits^n_{k=0}C^k_n.a^k.b^{n-k}\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(\Rightarrow A=\sum\limits^{90}_{k=2}C^k_{90}.2^k=...\)

Hoặc có thể làm như vầy: \(A=X-C^0_{90}.2^0-C^1_{90}.2=3^{90}-1-90.2=...\)

NV
17 tháng 12 2020

Xét khai triển:

\(\left(1+x\right)^{90}=C_{90}^0+C_{90}^1x+C_{90}^2x^2+...+C_{90}^{90}x^{90}\)

Thay \(x=2\) ta được:

\(3^{90}=C_{90}^0+2C_{90}^1+2^2C_{90}^2+...+2^{90}C_{90}^{90}\)

Vậy \(B=3^{90}\)

17 tháng 12 2020

Mod cho em hỏi cái này với ạ

uy tắc tam đoạn luận : \(\dfrac{\left(p\rightarrow q\right)\curlywedge p}{.\cdot.q}\)

Cho em hỏi ý nghĩa ký tự suy ra và ký tự 3 chấm với ạ

20 tháng 7 2017

9 tháng 7 2017

Ta có: \(A=1.3+2.4+3.5+4.6+...+99.101+100.102\)

\(A=1.\left(1+2\right)+2.\left(2+2\right)+3.\left(3+2\right)+4.\left(4+2\right)+....+99.\left(99+2\right)+100.\left(100+2\right)\)

\(A=\left(1^2+2^2+3^2+4^2+...+99^2+100^2\right)+\left(2+4+6+8+...+198+200\right)\)Đặt \(B=1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\)

\(\Rightarrow B=\left(1^2+2^2+3^2+4^2+5^2+...+99^2+100^2\right)-2^2.\left(1^2+2^2+3^2+4^2+5^2+....+49^2+50^2\right)\)Tính dãy tổng quát \(C=1^2+2^2+3^2+4^2+5^2+...+n^2\)

\(C=1\left(0+1\right)+2\left(1+1\right)+3.\left(2+1\right)+4.\left(3+1\right)+5\left(4+1\right)+...+n\left[\left(n-1\right)+1\right]\)

\(C=\left[1.2+2.3+3.4+4.5+...+\left(n-1\right).n\right]+\left(1+2+3+4+5+....+n\right)\)

\(C=n.\left(n+1\right).\left[\left(n-1\right):3+1:2\right]=n.\left(n+1\right).\left(2n+1\right):6\)

Áp dụng vào B ta được:

\(B=100.101.201:6-4.50.51.101:6=166650\)

\(\Rightarrow A=166650+\left(200+2\right).100:2\)

\(\Rightarrow A=166650+10100=176750\)

Vậy A = 176750

Chúc bạn học tốt!!

14 tháng 9 2018

Đặt \(A=1.2+2.3+.....+89.90\)

\(3A=1.2.3+2.3.3+..........+89.90.3\)

\(=1.2.3+2.3.\left(4-1\right)+.........+89.90.\left(91-88\right)\)

\(=1.2.3+2.3.4-1.2.3+.........+89.90.91-88.89.90\)

\(=89.90.91\Rightarrow A=89.30.91=242970\)

15 tháng 10 2018

\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)

\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)

\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)

\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)

\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)

\(=9-\left(1-\frac{1}{10}\right)\)

\(=9-\frac{9}{10}=\frac{81}{10}\)

24 tháng 2 2020

C7: A

C8:A

C9:D

A. -1;-3;-89;-98

A. 6

D. 6

~hok tốt