cho a,b,c>0 thỏa căna^2+b^2 + cănb^2+c^2 + cănc^2+a^2=3căn2
CMR: a^2/(b+c) + b^2/(c+a) + c^2/(a+b) >=3/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : \(A=2^{2001}+2^{2002}+2^{2003}+2^{2004}+2^{2005}+2^{2006}\)
\(=2^{2001}\left(1+2+2^2+2^3+2^4+2^5\right)\)
Ta có :
\(2^1\equiv2mod\left(10\right)\)
\(2^{10}\equiv4mod\left(10\right)\)
\(2^{100}\equiv4^{10}\equiv6mod\left(10\right)\)
\(2^{1000}\equiv6^{10}\equiv6mod\left(10\right)\)
\(2^{2000}\equiv6^2\equiv6mod\left(10\right)\)
\(\Rightarrow2^{2001}\equiv6.2\equiv2mod\left(10\right)\)
Mà : \(1+2+2^2+2^3+2^4+2^5\equiv3mod\left(10\right)\)
Vậy chữ số tận cùng của A là \(2\times3=6\)
Bài 2 : Đặt \(A=\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+2002\)
\(=\left(x-1\right)\left(x-8\right)\left(x-4\right)\left(x-5\right)+2002\)
\(=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2002\)
\(=\left(x^2-9x+14-6\right)\left(x^2-9x+14+6\right)+2002\)
\(=\left(x^2-9x+14\right)^2+1966\)
Vì \(\left(x^2-9x+14\right)^2\ge0\)
\(\Rightarrow\left(x^2-9x+14\right)^2+1966\ge1966\)
Vậy GTNN của A là 1966 .
Dấu bằng xảy ra khi \(x^2-9x+14=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=7\end{matrix}\right.\)
giả sử :c^2>a^2>b^2 khi đó ta có :
\(\frac{b^2+c^2}{a^2+3}+\frac{c^2-a^2}{b^2+4^2}+\frac{a^2-b^2}{c^2+5}\le\frac{b^2+c^2}{b^2+3}+\frac{c^2-a^2}{b^2+3}+\frac{a^2-b^2}{b^2+3}=\frac{2c^2}{b^2+3}\le\frac{2}{3}.c^2\)
Như vậy ta có :\(a^2+b^2+c^2\le\frac{2}{3}.c^2\). Điều này xảy ra khi a=b=c
chuc bn hk tốt!
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
Cho a,b,c>0 thỏa mãn a+b+c=3.Tìm gtln :
A= căn(a^2/a^2+b+c^2) + căn(b^2/b^2+c+a^2)+căn(c^2/c^2+a+b^2)
\(\Leftrightarrow a\left(a+2\right)\left(c+2\right)+b\left(a+2\right)\left(c+2\right)+c\left(b+2\right)\left(c+2\right)\le\left(a+2\right)\left(b+2\right)\left(c+2\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+ab^2+bc^2+ca^2\le8+abc\)
\(\Leftrightarrow ab^2+bc^2+ca^2\le2+abc\)
Không mất tính tổng quát, giả sử \(b=mid\left\{a;b;c\right\}\)
\(\Rightarrow\left(a-b\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow ab+bc\ge b^2+ac\)
\(\Leftrightarrow ab^2+ca^2\le a^2b+abc\)
\(\Rightarrow ab^2+bc^2+ca^2\le bc^2+a^2b+abc=b\left(a^2+c^2\right)+abc=b\left(2-b^2\right)+abc\)
\(=2+abc-\left(b-1\right)^2\left(b+2\right)\le2+abc\) (đpcm)